Copied to
clipboard

G = D63Q16order 192 = 26·3

3rd semidirect product of D6 and Q16 acting via Q16/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D63Q16, C24.27D4, (C2×Q16)⋊5S3, (C6×Q16)⋊5C2, C241C424C2, (C2×C8).243D6, (C2×Q8).88D6, C6.30(C2×Q16), C2.19(S3×Q16), C6.81(C4○D8), C12.186(C2×D4), C8.28(C3⋊D4), C35(C8.18D4), D63Q8.8C2, Q82Dic335C2, (C2×C24).95C22, (C22×S3).60D4, C22.279(S3×D4), (C6×Q8).91C22, C12.107(C4○D4), C2.22(D63D4), C4.36(D42S3), C6.121(C4⋊D4), (C2×C12).462C23, (C2×Dic3).117D4, C2.18(D24⋊C2), C4⋊Dic3.185C22, (S3×C2×C8).5C2, C4.85(C2×C3⋊D4), (C2×C6).373(C2×D4), (C2×C3⋊C8).278C22, (S3×C2×C4).241C22, (C2×C4).550(C22×S3), SmallGroup(192,747)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D63Q16
C1C3C6C2×C6C2×C12S3×C2×C4S3×C2×C8 — D63Q16
C3C6C2×C12 — D63Q16
C1C22C2×C4C2×Q16

Generators and relations for D63Q16
 G = < a,b,c,d | a6=b2=c8=1, d2=c4, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c-1 >

Subgroups: 296 in 114 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, C3⋊C8, C24, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, Q8⋊C4, C2.D8, C22⋊Q8, C22×C8, C2×Q16, S3×C8, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C2×C24, C3×Q16, S3×C2×C4, C6×Q8, C8.18D4, C241C4, Q82Dic3, S3×C2×C8, D63Q8, C6×Q16, D63Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, C2×Q16, C4○D8, S3×D4, D42S3, C2×C3⋊D4, C8.18D4, S3×Q16, D24⋊C2, D63D4, D63Q16

Smallest permutation representation of D63Q16
On 96 points
Generators in S96
(1 31 79 45 34 95)(2 32 80 46 35 96)(3 25 73 47 36 89)(4 26 74 48 37 90)(5 27 75 41 38 91)(6 28 76 42 39 92)(7 29 77 43 40 93)(8 30 78 44 33 94)(9 61 84 70 24 49)(10 62 85 71 17 50)(11 63 86 72 18 51)(12 64 87 65 19 52)(13 57 88 66 20 53)(14 58 81 67 21 54)(15 59 82 68 22 55)(16 60 83 69 23 56)
(1 91)(2 92)(3 93)(4 94)(5 95)(6 96)(7 89)(8 90)(9 13)(10 14)(11 15)(12 16)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 87)(24 88)(25 40)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)(41 79)(42 80)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 57)(50 58)(51 59)(52 60)(53 61)(54 62)(55 63)(56 64)(65 69)(66 70)(67 71)(68 72)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 88 5 84)(2 87 6 83)(3 86 7 82)(4 85 8 81)(9 34 13 38)(10 33 14 37)(11 40 15 36)(12 39 16 35)(17 78 21 74)(18 77 22 73)(19 76 23 80)(20 75 24 79)(25 72 29 68)(26 71 30 67)(27 70 31 66)(28 69 32 65)(41 49 45 53)(42 56 46 52)(43 55 47 51)(44 54 48 50)(57 91 61 95)(58 90 62 94)(59 89 63 93)(60 96 64 92)

G:=sub<Sym(96)| (1,31,79,45,34,95)(2,32,80,46,35,96)(3,25,73,47,36,89)(4,26,74,48,37,90)(5,27,75,41,38,91)(6,28,76,42,39,92)(7,29,77,43,40,93)(8,30,78,44,33,94)(9,61,84,70,24,49)(10,62,85,71,17,50)(11,63,86,72,18,51)(12,64,87,65,19,52)(13,57,88,66,20,53)(14,58,81,67,21,54)(15,59,82,68,22,55)(16,60,83,69,23,56), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,13)(10,14)(11,15)(12,16)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(41,79)(42,80)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,69)(66,70)(67,71)(68,72), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,88,5,84)(2,87,6,83)(3,86,7,82)(4,85,8,81)(9,34,13,38)(10,33,14,37)(11,40,15,36)(12,39,16,35)(17,78,21,74)(18,77,22,73)(19,76,23,80)(20,75,24,79)(25,72,29,68)(26,71,30,67)(27,70,31,66)(28,69,32,65)(41,49,45,53)(42,56,46,52)(43,55,47,51)(44,54,48,50)(57,91,61,95)(58,90,62,94)(59,89,63,93)(60,96,64,92)>;

G:=Group( (1,31,79,45,34,95)(2,32,80,46,35,96)(3,25,73,47,36,89)(4,26,74,48,37,90)(5,27,75,41,38,91)(6,28,76,42,39,92)(7,29,77,43,40,93)(8,30,78,44,33,94)(9,61,84,70,24,49)(10,62,85,71,17,50)(11,63,86,72,18,51)(12,64,87,65,19,52)(13,57,88,66,20,53)(14,58,81,67,21,54)(15,59,82,68,22,55)(16,60,83,69,23,56), (1,91)(2,92)(3,93)(4,94)(5,95)(6,96)(7,89)(8,90)(9,13)(10,14)(11,15)(12,16)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39)(41,79)(42,80)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(65,69)(66,70)(67,71)(68,72), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,88,5,84)(2,87,6,83)(3,86,7,82)(4,85,8,81)(9,34,13,38)(10,33,14,37)(11,40,15,36)(12,39,16,35)(17,78,21,74)(18,77,22,73)(19,76,23,80)(20,75,24,79)(25,72,29,68)(26,71,30,67)(27,70,31,66)(28,69,32,65)(41,49,45,53)(42,56,46,52)(43,55,47,51)(44,54,48,50)(57,91,61,95)(58,90,62,94)(59,89,63,93)(60,96,64,92) );

G=PermutationGroup([[(1,31,79,45,34,95),(2,32,80,46,35,96),(3,25,73,47,36,89),(4,26,74,48,37,90),(5,27,75,41,38,91),(6,28,76,42,39,92),(7,29,77,43,40,93),(8,30,78,44,33,94),(9,61,84,70,24,49),(10,62,85,71,17,50),(11,63,86,72,18,51),(12,64,87,65,19,52),(13,57,88,66,20,53),(14,58,81,67,21,54),(15,59,82,68,22,55),(16,60,83,69,23,56)], [(1,91),(2,92),(3,93),(4,94),(5,95),(6,96),(7,89),(8,90),(9,13),(10,14),(11,15),(12,16),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,87),(24,88),(25,40),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39),(41,79),(42,80),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,57),(50,58),(51,59),(52,60),(53,61),(54,62),(55,63),(56,64),(65,69),(66,70),(67,71),(68,72)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,88,5,84),(2,87,6,83),(3,86,7,82),(4,85,8,81),(9,34,13,38),(10,33,14,37),(11,40,15,36),(12,39,16,35),(17,78,21,74),(18,77,22,73),(19,76,23,80),(20,75,24,79),(25,72,29,68),(26,71,30,67),(27,70,31,66),(28,69,32,65),(41,49,45,53),(42,56,46,52),(43,55,47,51),(44,54,48,50),(57,91,61,95),(58,90,62,94),(59,89,63,93),(60,96,64,92)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A24B24C24D
order1222223444444446668888888812121212121224242424
size11116622266882424222222266664488884444

36 irreducible representations

dim11111122222222224444
type++++++++++++--+-+
imageC1C2C2C2C2C2S3D4D4D4D6D6C4○D4Q16C3⋊D4C4○D8D42S3S3×D4S3×Q16D24⋊C2
kernelD63Q16C241C4Q82Dic3S3×C2×C8D63Q8C6×Q16C2×Q16C24C2×Dic3C22×S3C2×C8C2×Q8C12D6C8C6C4C22C2C2
# reps11212112111224441122

Matrix representation of D63Q16 in GL6(𝔽73)

72720000
100000
0072000
0007200
000010
000001
,
72720000
010000
001000
00297200
0000720
0000072
,
100000
010000
0022000
00281000
0000630
00004151
,
7200000
0720000
00146700
00455900
00005767
00005516

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,72,1,0,0,0,0,0,0,1,29,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,28,0,0,0,0,0,10,0,0,0,0,0,0,63,41,0,0,0,0,0,51],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,14,45,0,0,0,0,67,59,0,0,0,0,0,0,57,55,0,0,0,0,67,16] >;

D63Q16 in GAP, Magma, Sage, TeX

D_6\rtimes_3Q_{16}
% in TeX

G:=Group("D6:3Q16");
// GroupNames label

G:=SmallGroup(192,747);
// by ID

G=gap.SmallGroup(192,747);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,254,219,184,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽