Copied to
clipboard

G = C13⋊C16order 208 = 24·13

The semidirect product of C13 and C16 acting via C16/C4=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C13⋊C16, C26.C8, C52.2C4, C2.(C13⋊C8), C4.2(C13⋊C4), C132C8.2C2, SmallGroup(208,3)

Series: Derived Chief Lower central Upper central

C1C13 — C13⋊C16
C1C13C26C52C132C8 — C13⋊C16
C13 — C13⋊C16
C1C4

Generators and relations for C13⋊C16
 G = < a,b | a13=b16=1, bab-1=a5 >

13C8
13C16

Character table of C13⋊C16

 class 124A4B8A8B8C8D13A13B13C16A16B16C16D16E16F16G16H26A26B26C52A52B52C52D52E52F
 size 1111131313134441313131313131313444444444
ρ11111111111111111111111111111    trivial
ρ211111111111-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ31111-1-1-1-1111i-i-i-iiii-i111111111    linear of order 4
ρ41111-1-1-1-1111-iiii-i-i-ii111111111    linear of order 4
ρ511-1-1i-i-ii111ζ8ζ87ζ83ζ83ζ85ζ85ζ8ζ87111-1-1-1-1-1-1    linear of order 8
ρ611-1-1-iii-i111ζ87ζ8ζ85ζ85ζ83ζ83ζ87ζ8111-1-1-1-1-1-1    linear of order 8
ρ711-1-1i-i-ii111ζ85ζ83ζ87ζ87ζ8ζ8ζ85ζ83111-1-1-1-1-1-1    linear of order 8
ρ811-1-1-iii-i111ζ83ζ85ζ8ζ8ζ87ζ87ζ83ζ85111-1-1-1-1-1-1    linear of order 8
ρ91-1-iiζ1610ζ166ζ1614ζ162111ζ165ζ163ζ167ζ1615ζ16ζ169ζ1613ζ1611-1-1-1-iii-ii-i    linear of order 16
ρ101-1-iiζ162ζ1614ζ166ζ1610111ζ169ζ1615ζ163ζ1611ζ165ζ1613ζ16ζ167-1-1-1-iii-ii-i    linear of order 16
ρ111-1i-iζ1614ζ162ζ1610ζ166111ζ167ζ16ζ1613ζ165ζ1611ζ163ζ1615ζ169-1-1-1i-i-ii-ii    linear of order 16
ρ121-1i-iζ166ζ1610ζ162ζ1614111ζ1611ζ1613ζ169ζ16ζ1615ζ167ζ163ζ165-1-1-1i-i-ii-ii    linear of order 16
ρ131-1-iiζ162ζ1614ζ166ζ1610111ζ16ζ167ζ1611ζ163ζ1613ζ165ζ169ζ1615-1-1-1-iii-ii-i    linear of order 16
ρ141-1-iiζ1610ζ166ζ1614ζ162111ζ1613ζ1611ζ1615ζ167ζ169ζ16ζ165ζ163-1-1-1-iii-ii-i    linear of order 16
ρ151-1i-iζ1614ζ162ζ1610ζ166111ζ1615ζ169ζ165ζ1613ζ163ζ1611ζ167ζ16-1-1-1i-i-ii-ii    linear of order 16
ρ161-1i-iζ166ζ1610ζ162ζ1614111ζ163ζ165ζ16ζ169ζ167ζ1615ζ1611ζ1613-1-1-1i-i-ii-ii    linear of order 16
ρ1744440000ζ13111310133132ζ131213813513ζ13913713613400000000ζ139137136134ζ131213813513ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ139137136134    orthogonal lifted from C13⋊C4
ρ1844440000ζ131213813513ζ139137136134ζ1311131013313200000000ζ13111310133132ζ139137136134ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ13111310133132    orthogonal lifted from C13⋊C4
ρ1944440000ζ139137136134ζ13111310133132ζ13121381351300000000ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ131213813513    orthogonal lifted from C13⋊C4
ρ2044-4-40000ζ131213813513ζ139137136134ζ1311131013313200000000ζ13111310133132ζ139137136134ζ1312138135131391371361341391371361341312138135131312138135131311131013313213111310133132    symplectic lifted from C13⋊C8, Schur index 2
ρ2144-4-40000ζ13111310133132ζ131213813513ζ13913713613400000000ζ139137136134ζ131213813513ζ131113101331321312138135131312138135131311131013313213111310133132139137136134139137136134    symplectic lifted from C13⋊C8, Schur index 2
ρ2244-4-40000ζ139137136134ζ13111310133132ζ13121381351300000000ζ131213813513ζ13111310133132ζ1391371361341311131013313213111310133132139137136134139137136134131213813513131213813513    symplectic lifted from C13⋊C8, Schur index 2
ρ234-4-4i4i0000ζ131213813513ζ139137136134ζ131113101331320000000013111310133132139137136134131213813513ζ43ζ13943ζ13743ζ13643ζ134ζ4ζ1394ζ1374ζ1364ζ134ζ4ζ13124ζ1384ζ1354ζ13ζ43ζ131243ζ13843ζ13543ζ13ζ4ζ13114ζ13104ζ1334ζ132ζ43ζ131143ζ131043ζ13343ζ132    complex faithful, Schur index 4
ρ244-44i-4i0000ζ139137136134ζ13111310133132ζ1312138135130000000013121381351313111310133132139137136134ζ4ζ13114ζ13104ζ1334ζ132ζ43ζ131143ζ131043ζ13343ζ132ζ43ζ13943ζ13743ζ13643ζ134ζ4ζ1394ζ1374ζ1364ζ134ζ43ζ131243ζ13843ζ13543ζ13ζ4ζ13124ζ1384ζ1354ζ13    complex faithful, Schur index 4
ρ254-44i-4i0000ζ13111310133132ζ131213813513ζ1391371361340000000013913713613413121381351313111310133132ζ4ζ13124ζ1384ζ1354ζ13ζ43ζ131243ζ13843ζ13543ζ13ζ43ζ131143ζ131043ζ13343ζ132ζ4ζ13114ζ13104ζ1334ζ132ζ43ζ13943ζ13743ζ13643ζ134ζ4ζ1394ζ1374ζ1364ζ134    complex faithful, Schur index 4
ρ264-4-4i4i0000ζ13111310133132ζ131213813513ζ1391371361340000000013913713613413121381351313111310133132ζ43ζ131243ζ13843ζ13543ζ13ζ4ζ13124ζ1384ζ1354ζ13ζ4ζ13114ζ13104ζ1334ζ132ζ43ζ131143ζ131043ζ13343ζ132ζ4ζ1394ζ1374ζ1364ζ134ζ43ζ13943ζ13743ζ13643ζ134    complex faithful, Schur index 4
ρ274-44i-4i0000ζ131213813513ζ139137136134ζ131113101331320000000013111310133132139137136134131213813513ζ4ζ1394ζ1374ζ1364ζ134ζ43ζ13943ζ13743ζ13643ζ134ζ43ζ131243ζ13843ζ13543ζ13ζ4ζ13124ζ1384ζ1354ζ13ζ43ζ131143ζ131043ζ13343ζ132ζ4ζ13114ζ13104ζ1334ζ132    complex faithful, Schur index 4
ρ284-4-4i4i0000ζ139137136134ζ13111310133132ζ1312138135130000000013121381351313111310133132139137136134ζ43ζ131143ζ131043ζ13343ζ132ζ4ζ13114ζ13104ζ1334ζ132ζ4ζ1394ζ1374ζ1364ζ134ζ43ζ13943ζ13743ζ13643ζ134ζ4ζ13124ζ1384ζ1354ζ13ζ43ζ131243ζ13843ζ13543ζ13    complex faithful, Schur index 4

Smallest permutation representation of C13⋊C16
Regular action on 208 points
Generators in S208
(1 57 168 39 207 104 30 178 130 81 74 118 153)(2 105 75 169 179 154 208 82 58 31 119 40 131)(3 155 120 76 83 132 180 32 106 193 41 170 59)(4 133 42 121 17 60 84 194 156 181 171 77 107)(5 61 172 43 195 108 18 182 134 85 78 122 157)(6 109 79 173 183 158 196 86 62 19 123 44 135)(7 159 124 80 87 136 184 20 110 197 45 174 63)(8 137 46 125 21 64 88 198 160 185 175 65 111)(9 49 176 47 199 112 22 186 138 89 66 126 145)(10 97 67 161 187 146 200 90 50 23 127 48 139)(11 147 128 68 91 140 188 24 98 201 33 162 51)(12 141 34 113 25 52 92 202 148 189 163 69 99)(13 53 164 35 203 100 26 190 142 93 70 114 149)(14 101 71 165 191 150 204 94 54 27 115 36 143)(15 151 116 72 95 144 192 28 102 205 37 166 55)(16 129 38 117 29 56 96 206 152 177 167 73 103)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)

G:=sub<Sym(208)| (1,57,168,39,207,104,30,178,130,81,74,118,153)(2,105,75,169,179,154,208,82,58,31,119,40,131)(3,155,120,76,83,132,180,32,106,193,41,170,59)(4,133,42,121,17,60,84,194,156,181,171,77,107)(5,61,172,43,195,108,18,182,134,85,78,122,157)(6,109,79,173,183,158,196,86,62,19,123,44,135)(7,159,124,80,87,136,184,20,110,197,45,174,63)(8,137,46,125,21,64,88,198,160,185,175,65,111)(9,49,176,47,199,112,22,186,138,89,66,126,145)(10,97,67,161,187,146,200,90,50,23,127,48,139)(11,147,128,68,91,140,188,24,98,201,33,162,51)(12,141,34,113,25,52,92,202,148,189,163,69,99)(13,53,164,35,203,100,26,190,142,93,70,114,149)(14,101,71,165,191,150,204,94,54,27,115,36,143)(15,151,116,72,95,144,192,28,102,205,37,166,55)(16,129,38,117,29,56,96,206,152,177,167,73,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)>;

G:=Group( (1,57,168,39,207,104,30,178,130,81,74,118,153)(2,105,75,169,179,154,208,82,58,31,119,40,131)(3,155,120,76,83,132,180,32,106,193,41,170,59)(4,133,42,121,17,60,84,194,156,181,171,77,107)(5,61,172,43,195,108,18,182,134,85,78,122,157)(6,109,79,173,183,158,196,86,62,19,123,44,135)(7,159,124,80,87,136,184,20,110,197,45,174,63)(8,137,46,125,21,64,88,198,160,185,175,65,111)(9,49,176,47,199,112,22,186,138,89,66,126,145)(10,97,67,161,187,146,200,90,50,23,127,48,139)(11,147,128,68,91,140,188,24,98,201,33,162,51)(12,141,34,113,25,52,92,202,148,189,163,69,99)(13,53,164,35,203,100,26,190,142,93,70,114,149)(14,101,71,165,191,150,204,94,54,27,115,36,143)(15,151,116,72,95,144,192,28,102,205,37,166,55)(16,129,38,117,29,56,96,206,152,177,167,73,103), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208) );

G=PermutationGroup([[(1,57,168,39,207,104,30,178,130,81,74,118,153),(2,105,75,169,179,154,208,82,58,31,119,40,131),(3,155,120,76,83,132,180,32,106,193,41,170,59),(4,133,42,121,17,60,84,194,156,181,171,77,107),(5,61,172,43,195,108,18,182,134,85,78,122,157),(6,109,79,173,183,158,196,86,62,19,123,44,135),(7,159,124,80,87,136,184,20,110,197,45,174,63),(8,137,46,125,21,64,88,198,160,185,175,65,111),(9,49,176,47,199,112,22,186,138,89,66,126,145),(10,97,67,161,187,146,200,90,50,23,127,48,139),(11,147,128,68,91,140,188,24,98,201,33,162,51),(12,141,34,113,25,52,92,202,148,189,163,69,99),(13,53,164,35,203,100,26,190,142,93,70,114,149),(14,101,71,165,191,150,204,94,54,27,115,36,143),(15,151,116,72,95,144,192,28,102,205,37,166,55),(16,129,38,117,29,56,96,206,152,177,167,73,103)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)]])

C13⋊C16 is a maximal subgroup of   D13⋊C16  D26.C8  C52.C8
C13⋊C16 is a maximal quotient of   C13⋊C32

Matrix representation of C13⋊C16 in GL4(𝔽5) generated by

2032
3123
1023
4424
,
0210
3022
4000
1020
G:=sub<GL(4,GF(5))| [2,3,1,4,0,1,0,4,3,2,2,2,2,3,3,4],[0,3,4,1,2,0,0,0,1,2,0,2,0,2,0,0] >;

C13⋊C16 in GAP, Magma, Sage, TeX

C_{13}\rtimes C_{16}
% in TeX

G:=Group("C13:C16");
// GroupNames label

G:=SmallGroup(208,3);
// by ID

G=gap.SmallGroup(208,3);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,10,26,42,3204,2409]);
// Polycyclic

G:=Group<a,b|a^13=b^16=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C13⋊C16 in TeX
Character table of C13⋊C16 in TeX

׿
×
𝔽