Copied to
clipboard

G = Q8:He3order 216 = 23·33

The semidirect product of Q8 and He3 acting via He3/C32=C3

non-abelian, soluble

Aliases: Q8:He3, C32:2SL2(F3), (C3xC6).2A4, C6.11(C3xA4), C2.(C32:A4), (Q8xC32):1C3, (C3xSL2(F3)):C3, (C3xQ8).5C32, C3.5(C3xSL2(F3)), SmallGroup(216,42)

Series: Derived Chief Lower central Upper central

C1C2C3xQ8 — Q8:He3
C1C2Q8C3xQ8C3xSL2(F3) — Q8:He3
Q8C3xQ8 — Q8:He3
C1C6C3xC6

Generators and relations for Q8:He3
 G = < a,b,c,d,e | a4=c3=d3=e3=1, b2=a2, bab-1=a-1, ac=ca, ad=da, eae-1=b, bc=cb, bd=db, ebe-1=ab, cd=dc, ece-1=cd-1, de=ed >

Subgroups: 153 in 39 conjugacy classes, 13 normal (10 characteristic)
Quotients: C1, C3, C32, A4, SL2(F3), He3, C3xA4, C3xSL2(F3), C32:A4, Q8:He3
3C3
12C3
12C3
12C3
3C4
3C6
12C6
12C6
12C6
4C32
4C32
4C32
3C12
3C12
3C12
3C12
4C3xC6
4C3xC6
4C3xC6
4He3
3SL2(F3)
3SL2(F3)
3SL2(F3)
3C3xQ8
3C3xC12
4C2xHe3

Smallest permutation representation of Q8:He3
On 72 points
Generators in S72
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 7 3 5)(2 6 4 8)(9 15 11 13)(10 14 12 16)(17 23 19 21)(18 22 20 24)(25 31 27 29)(26 30 28 32)(33 39 35 37)(34 38 36 40)(41 47 43 45)(42 46 44 48)(49 55 51 53)(50 54 52 56)(57 63 59 61)(58 62 60 64)(65 71 67 69)(66 70 68 72)
(1 49 25)(2 50 26)(3 51 27)(4 52 28)(5 53 29)(6 54 30)(7 55 31)(8 56 32)(9 57 33)(10 58 34)(11 59 35)(12 60 36)(13 61 37)(14 62 38)(15 63 39)(16 64 40)(17 65 41)(18 66 42)(19 67 43)(20 68 44)(21 69 45)(22 70 46)(23 71 47)(24 72 48)
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(49 65 57)(50 66 58)(51 67 59)(52 68 60)(53 69 61)(54 70 62)(55 71 63)(56 72 64)
(1 25 57)(2 30 63)(3 27 59)(4 32 61)(5 28 64)(6 31 58)(7 26 62)(8 29 60)(9 33 65)(10 38 71)(11 35 67)(12 40 69)(13 36 72)(14 39 66)(15 34 70)(16 37 68)(17 41 49)(18 46 55)(19 43 51)(20 48 53)(21 44 56)(22 47 50)(23 42 54)(24 45 52)

G:=sub<Sym(72)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,7,3,5)(2,6,4,8)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32)(33,39,35,37)(34,38,36,40)(41,47,43,45)(42,46,44,48)(49,55,51,53)(50,54,52,56)(57,63,59,61)(58,62,60,64)(65,71,67,69)(66,70,68,72), (1,49,25)(2,50,26)(3,51,27)(4,52,28)(5,53,29)(6,54,30)(7,55,31)(8,56,32)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48), (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(49,65,57)(50,66,58)(51,67,59)(52,68,60)(53,69,61)(54,70,62)(55,71,63)(56,72,64), (1,25,57)(2,30,63)(3,27,59)(4,32,61)(5,28,64)(6,31,58)(7,26,62)(8,29,60)(9,33,65)(10,38,71)(11,35,67)(12,40,69)(13,36,72)(14,39,66)(15,34,70)(16,37,68)(17,41,49)(18,46,55)(19,43,51)(20,48,53)(21,44,56)(22,47,50)(23,42,54)(24,45,52)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,7,3,5)(2,6,4,8)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32)(33,39,35,37)(34,38,36,40)(41,47,43,45)(42,46,44,48)(49,55,51,53)(50,54,52,56)(57,63,59,61)(58,62,60,64)(65,71,67,69)(66,70,68,72), (1,49,25)(2,50,26)(3,51,27)(4,52,28)(5,53,29)(6,54,30)(7,55,31)(8,56,32)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48), (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(49,65,57)(50,66,58)(51,67,59)(52,68,60)(53,69,61)(54,70,62)(55,71,63)(56,72,64), (1,25,57)(2,30,63)(3,27,59)(4,32,61)(5,28,64)(6,31,58)(7,26,62)(8,29,60)(9,33,65)(10,38,71)(11,35,67)(12,40,69)(13,36,72)(14,39,66)(15,34,70)(16,37,68)(17,41,49)(18,46,55)(19,43,51)(20,48,53)(21,44,56)(22,47,50)(23,42,54)(24,45,52) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,7,3,5),(2,6,4,8),(9,15,11,13),(10,14,12,16),(17,23,19,21),(18,22,20,24),(25,31,27,29),(26,30,28,32),(33,39,35,37),(34,38,36,40),(41,47,43,45),(42,46,44,48),(49,55,51,53),(50,54,52,56),(57,63,59,61),(58,62,60,64),(65,71,67,69),(66,70,68,72)], [(1,49,25),(2,50,26),(3,51,27),(4,52,28),(5,53,29),(6,54,30),(7,55,31),(8,56,32),(9,57,33),(10,58,34),(11,59,35),(12,60,36),(13,61,37),(14,62,38),(15,63,39),(16,64,40),(17,65,41),(18,66,42),(19,67,43),(20,68,44),(21,69,45),(22,70,46),(23,71,47),(24,72,48)], [(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(49,65,57),(50,66,58),(51,67,59),(52,68,60),(53,69,61),(54,70,62),(55,71,63),(56,72,64)], [(1,25,57),(2,30,63),(3,27,59),(4,32,61),(5,28,64),(6,31,58),(7,26,62),(8,29,60),(9,33,65),(10,38,71),(11,35,67),(12,40,69),(13,36,72),(14,39,66),(15,34,70),(16,37,68),(17,41,49),(18,46,55),(19,43,51),(20,48,53),(21,44,56),(22,47,50),(23,42,54),(24,45,52)]])

Q8:He3 is a maximal subgroup of   C32:CSU2(F3)  C32:2GL2(F3)  C32:2CSU2(F3)  C32:3GL2(F3)  C6.(S3xA4)  Q8:He3:C2  C4oD4:He3

31 conjugacy classes

class 1  2 3A3B3C3D3E···3J 4 6A6B6C6D6E···6J12A···12H
order1233333···3466666···612···12
size11113312···126113312···126···6

31 irreducible representations

dim11122233336
type+-+
imageC1C3C3SL2(F3)SL2(F3)C3xSL2(F3)A4He3C3xA4C32:A4Q8:He3
kernelQ8:He3C3xSL2(F3)Q8xC32C32C32C3C3xC6Q8C6C2C1
# reps16212612262

Matrix representation of Q8:He3 in GL5(F13)

01000
120000
00100
00010
00001
,
34000
410000
00100
00010
00001
,
10000
01000
00180
000121
000120
,
10000
01000
00900
00090
00009
,
01000
410000
00907
001204
00934

G:=sub<GL(5,GF(13))| [0,12,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[3,4,0,0,0,4,10,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,8,12,12,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[0,4,0,0,0,1,10,0,0,0,0,0,9,12,9,0,0,0,0,3,0,0,7,4,4] >;

Q8:He3 in GAP, Magma, Sage, TeX

Q_8\rtimes {\rm He}_3
% in TeX

G:=Group("Q8:He3");
// GroupNames label

G:=SmallGroup(216,42);
// by ID

G=gap.SmallGroup(216,42);
# by ID

G:=PCGroup([6,-3,-3,-3,-2,2,-2,145,1299,117,2434,202,88]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^3=e^3=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=b,b*c=c*b,b*d=d*b,e*b*e^-1=a*b,c*d=d*c,e*c*e^-1=c*d^-1,d*e=e*d>;
// generators/relations

Export

Subgroup lattice of Q8:He3 in TeX

׿
x
:
Z
F
o
wr
Q
<