Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C6

Direct product G=N×Q with N=S3×C6 and Q=C6
dρLabelID
S3×C6272S3xC6^2216,174

Semidirect products G=N:Q with N=S3×C6 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C6 = C3×D6⋊S3φ: C6/C3C2 ⊆ Out S3×C6244(S3xC6):1C6216,121
(S3×C6)⋊2C6 = C3×C3⋊D12φ: C6/C3C2 ⊆ Out S3×C6244(S3xC6):2C6216,122
(S3×C6)⋊3C6 = C32×D12φ: C6/C3C2 ⊆ Out S3×C672(S3xC6):3C6216,137
(S3×C6)⋊4C6 = C32×C3⋊D4φ: C6/C3C2 ⊆ Out S3×C636(S3xC6):4C6216,139
(S3×C6)⋊5C6 = S32×C6φ: C6/C3C2 ⊆ Out S3×C6244(S3xC6):5C6216,170

Non-split extensions G=N.Q with N=S3×C6 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C6).1C6 = C9×D12φ: C6/C3C2 ⊆ Out S3×C6722(S3xC6).1C6216,48
(S3×C6).2C6 = C9×C3⋊D4φ: C6/C3C2 ⊆ Out S3×C6362(S3xC6).2C6216,58
(S3×C6).3C6 = C3×S3×Dic3φ: C6/C3C2 ⊆ Out S3×C6244(S3xC6).3C6216,119
(S3×C6).4C6 = S3×C36φ: trivial image722(S3xC6).4C6216,47
(S3×C6).5C6 = S3×C2×C18φ: trivial image72(S3xC6).5C6216,109
(S3×C6).6C6 = S3×C3×C12φ: trivial image72(S3xC6).6C6216,136

׿
×
𝔽