Copied to
clipboard

G = C9xD12order 216 = 23·33

Direct product of C9 and D12

direct product, metacyclic, supersoluble, monomial

Aliases: C9xD12, C36:3S3, C12:1C18, D6:1C18, C18.21D6, C4:(S3xC9), (C3xC9):4D4, C3:1(D4xC9), (C3xC36):6C2, (C3xD12).C3, (S3xC18):1C2, (S3xC6).1C6, C2.4(S3xC18), C6.31(S3xC6), C6.3(C2xC18), C3.4(C3xD12), C12.16(C3xS3), (C3xC12).11C6, C32.2(C3xD4), (C3xC18).10C22, (C3xC6).20(C2xC6), SmallGroup(216,48)

Series: Derived Chief Lower central Upper central

C1C6 — C9xD12
C1C3C32C3xC6C3xC18S3xC18 — C9xD12
C3C6 — C9xD12
C1C18C36

Generators and relations for C9xD12
 G = < a,b,c | a9=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 114 in 54 conjugacy classes, 27 normal (21 characteristic)
Quotients: C1, C2, C3, C22, S3, C6, D4, C9, D6, C2xC6, C18, C3xS3, D12, C3xD4, C2xC18, S3xC6, S3xC9, D4xC9, C3xD12, S3xC18, C9xD12
6C2
6C2
2C3
3C22
3C22
2S3
2C6
2S3
6C6
6C6
2C9
3D4
2C12
3C2xC6
3C2xC6
2C18
2C3xS3
2C3xS3
6C18
6C18
3C3xD4
2C36
3C2xC18
3C2xC18
2S3xC9
2S3xC9
3D4xC9

Smallest permutation representation of C9xD12
On 72 points
Generators in S72
(1 55 62 5 59 66 9 51 70)(2 56 63 6 60 67 10 52 71)(3 57 64 7 49 68 11 53 72)(4 58 65 8 50 69 12 54 61)(13 35 40 21 31 48 17 27 44)(14 36 41 22 32 37 18 28 45)(15 25 42 23 33 38 19 29 46)(16 26 43 24 34 39 20 30 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 36)(11 35)(12 34)(13 68)(14 67)(15 66)(16 65)(17 64)(18 63)(19 62)(20 61)(21 72)(22 71)(23 70)(24 69)(37 56)(38 55)(39 54)(40 53)(41 52)(42 51)(43 50)(44 49)(45 60)(46 59)(47 58)(48 57)

G:=sub<Sym(72)| (1,55,62,5,59,66,9,51,70)(2,56,63,6,60,67,10,52,71)(3,57,64,7,49,68,11,53,72)(4,58,65,8,50,69,12,54,61)(13,35,40,21,31,48,17,27,44)(14,36,41,22,32,37,18,28,45)(15,25,42,23,33,38,19,29,46)(16,26,43,24,34,39,20,30,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,72)(22,71)(23,70)(24,69)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,60)(46,59)(47,58)(48,57)>;

G:=Group( (1,55,62,5,59,66,9,51,70)(2,56,63,6,60,67,10,52,71)(3,57,64,7,49,68,11,53,72)(4,58,65,8,50,69,12,54,61)(13,35,40,21,31,48,17,27,44)(14,36,41,22,32,37,18,28,45)(15,25,42,23,33,38,19,29,46)(16,26,43,24,34,39,20,30,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,36)(11,35)(12,34)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,72)(22,71)(23,70)(24,69)(37,56)(38,55)(39,54)(40,53)(41,52)(42,51)(43,50)(44,49)(45,60)(46,59)(47,58)(48,57) );

G=PermutationGroup([[(1,55,62,5,59,66,9,51,70),(2,56,63,6,60,67,10,52,71),(3,57,64,7,49,68,11,53,72),(4,58,65,8,50,69,12,54,61),(13,35,40,21,31,48,17,27,44),(14,36,41,22,32,37,18,28,45),(15,25,42,23,33,38,19,29,46),(16,26,43,24,34,39,20,30,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,36),(11,35),(12,34),(13,68),(14,67),(15,66),(16,65),(17,64),(18,63),(19,62),(20,61),(21,72),(22,71),(23,70),(24,69),(37,56),(38,55),(39,54),(40,53),(41,52),(42,51),(43,50),(44,49),(45,60),(46,59),(47,58),(48,57)]])

C9xD12 is a maximal subgroup of
D36:S3  C9:D24  D12.D9  C36.D6  D12:5D9  D12:D9  C36:D6  S3xD4xC9

81 conjugacy classes

class 1 2A2B2C3A3B3C3D3E 4 6A6B6C6D6E6F6G6H6I9A···9F9G···9L12A···12H18A···18F18G···18L18M···18X36A···36R
order12223333346666666669···99···912···1218···1818···1818···1836···36
size11661122221122266661···12···22···21···12···26···62···2

81 irreducible representations

dim111111111222222222222
type+++++++
imageC1C2C2C3C6C6C9C18C18S3D4D6C3xS3D12C3xD4S3xC6S3xC9D4xC9C3xD12S3xC18C9xD12
kernelC9xD12C3xC36S3xC18C3xD12C3xC12S3xC6D12C12D6C36C3xC9C18C12C9C32C6C4C3C3C2C1
# reps11222466121112222664612

Matrix representation of C9xD12 in GL2(F37) generated by

70
07
,
230
029
,
030
210
G:=sub<GL(2,GF(37))| [7,0,0,7],[23,0,0,29],[0,21,30,0] >;

C9xD12 in GAP, Magma, Sage, TeX

C_9\times D_{12}
% in TeX

G:=Group("C9xD12");
// GroupNames label

G:=SmallGroup(216,48);
// by ID

G=gap.SmallGroup(216,48);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,122,5189]);
// Polycyclic

G:=Group<a,b,c|a^9=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C9xD12 in TeX

׿
x
:
Z
F
o
wr
Q
<