direct product, metacyclic, supersoluble, monomial, A-group
Aliases: S3×C36, D6.C18, C12⋊2C18, C18.20D6, Dic3⋊2C18, (C3×C36)⋊1C2, C3⋊1(C2×C36), (S3×C12).C3, (C3×S3).C12, (S3×C6).4C6, C6.30(S3×C6), C3.4(S3×C12), C2.1(S3×C18), C6.2(C2×C18), C36○(C3×Dic3), C36○(C9×Dic3), (S3×C18).2C2, C12.19(C3×S3), (C3×C12).14C6, (C9×Dic3)⋊5C2, C32.2(C2×C12), (C3×C18).9C22, (C3×Dic3).5C6, (C3×C9)⋊4(C2×C4), (C3×C6).19(C2×C6), SmallGroup(216,47)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C36 |
Generators and relations for S3×C36
G = < a,b,c | a36=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 31)(8 20 32)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)(21 60)(22 61)(23 62)(24 63)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 70)(32 71)(33 72)(34 37)(35 38)(36 39)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,37)(35,38)(36,39)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,37)(35,38)(36,39) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,31),(8,20,32),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59),(21,60),(22,61),(23,62),(24,63),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,70),(32,71),(33,72),(34,37),(35,38),(36,39)]])
S3×C36 is a maximal subgroup of
D6.Dic9 D6.D18 D36⋊5S3 Dic9.D6
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 9A | ··· | 9F | 9G | ··· | 9L | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 18A | ··· | 18F | 18G | ··· | 18L | 18M | ··· | 18X | 36A | ··· | 36L | 36M | ··· | 36X | 36Y | ··· | 36AJ |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C6 | C6 | C6 | C9 | C12 | C18 | C18 | C18 | C36 | S3 | D6 | C3×S3 | C4×S3 | S3×C6 | S3×C9 | S3×C12 | S3×C18 | S3×C36 |
kernel | S3×C36 | C9×Dic3 | C3×C36 | S3×C18 | S3×C12 | S3×C9 | C3×Dic3 | C3×C12 | S3×C6 | C4×S3 | C3×S3 | Dic3 | C12 | D6 | S3 | C36 | C18 | C12 | C9 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 6 | 8 | 6 | 6 | 6 | 24 | 1 | 1 | 2 | 2 | 2 | 6 | 4 | 6 | 12 |
Matrix representation of S3×C36 ►in GL2(𝔽37) generated by
19 | 0 |
0 | 19 |
10 | 29 |
0 | 26 |
23 | 34 |
28 | 14 |
G:=sub<GL(2,GF(37))| [19,0,0,19],[10,0,29,26],[23,28,34,14] >;
S3×C36 in GAP, Magma, Sage, TeX
S_3\times C_{36}
% in TeX
G:=Group("S3xC36");
// GroupNames label
G:=SmallGroup(216,47);
// by ID
G=gap.SmallGroup(216,47);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,79,122,5189]);
// Polycyclic
G:=Group<a,b,c|a^36=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export