Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=C6

Direct product G=NxQ with N=C3xDic3 and Q=C6
dρLabelID
Dic3xC3xC672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C3xDic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xDic3):1C6 = C3xC3:D12φ: C6/C3C2 ⊆ Out C3xDic3244(C3xDic3):1C6216,122
(C3xDic3):2C6 = C3xS3xDic3φ: C6/C3C2 ⊆ Out C3xDic3244(C3xDic3):2C6216,119
(C3xDic3):3C6 = C3xC6.D6φ: C6/C3C2 ⊆ Out C3xDic3244(C3xDic3):3C6216,120
(C3xDic3):4C6 = C32xC3:D4φ: C6/C3C2 ⊆ Out C3xDic336(C3xDic3):4C6216,139
(C3xDic3):5C6 = S3xC3xC12φ: trivial image72(C3xDic3):5C6216,136

Non-split extensions G=N.Q with N=C3xDic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xDic3).1C6 = C3xC32:2Q8φ: C6/C3C2 ⊆ Out C3xDic3244(C3xDic3).1C6216,123
(C3xDic3).2C6 = C9xDic6φ: C6/C3C2 ⊆ Out C3xDic3722(C3xDic3).2C6216,44
(C3xDic3).3C6 = C9xC3:D4φ: C6/C3C2 ⊆ Out C3xDic3362(C3xDic3).3C6216,58
(C3xDic3).4C6 = C32xDic6φ: C6/C3C2 ⊆ Out C3xDic372(C3xDic3).4C6216,135
(C3xDic3).5C6 = S3xC36φ: trivial image722(C3xDic3).5C6216,47
(C3xDic3).6C6 = Dic3xC18φ: trivial image72(C3xDic3).6C6216,56

׿
x
:
Z
F
o
wr
Q
<