# Extensions 1→N→G→Q→1 with N=C3×Dic3 and Q=C6

Direct product G=N×Q with N=C3×Dic3 and Q=C6
dρLabelID
Dic3×C3×C672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C3×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×Dic3)⋊1C6 = C3×C3⋊D12φ: C6/C3C2 ⊆ Out C3×Dic3244(C3xDic3):1C6216,122
(C3×Dic3)⋊2C6 = C3×S3×Dic3φ: C6/C3C2 ⊆ Out C3×Dic3244(C3xDic3):2C6216,119
(C3×Dic3)⋊3C6 = C3×C6.D6φ: C6/C3C2 ⊆ Out C3×Dic3244(C3xDic3):3C6216,120
(C3×Dic3)⋊4C6 = C32×C3⋊D4φ: C6/C3C2 ⊆ Out C3×Dic336(C3xDic3):4C6216,139
(C3×Dic3)⋊5C6 = S3×C3×C12φ: trivial image72(C3xDic3):5C6216,136

Non-split extensions G=N.Q with N=C3×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×Dic3).1C6 = C3×C322Q8φ: C6/C3C2 ⊆ Out C3×Dic3244(C3xDic3).1C6216,123
(C3×Dic3).2C6 = C9×Dic6φ: C6/C3C2 ⊆ Out C3×Dic3722(C3xDic3).2C6216,44
(C3×Dic3).3C6 = C9×C3⋊D4φ: C6/C3C2 ⊆ Out C3×Dic3362(C3xDic3).3C6216,58
(C3×Dic3).4C6 = C32×Dic6φ: C6/C3C2 ⊆ Out C3×Dic372(C3xDic3).4C6216,135
(C3×Dic3).5C6 = S3×C36φ: trivial image722(C3xDic3).5C6216,47
(C3×Dic3).6C6 = Dic3×C18φ: trivial image72(C3xDic3).6C6216,56

׿
×
𝔽