Copied to
clipboard

G = C13×D9order 234 = 2·32·13

Direct product of C13 and D9

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C13×D9, C9⋊C26, C1173C2, C39.2S3, C3.(S3×C13), SmallGroup(234,3)

Series: Derived Chief Lower central Upper central

C1C9 — C13×D9
C1C3C9C117 — C13×D9
C9 — C13×D9
C1C13

Generators and relations for C13×D9
 G = < a,b,c | a13=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

9C2
3S3
9C26
3S3×C13

Smallest permutation representation of C13×D9
On 117 points
Generators in S117
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)
(1 60 17 109 67 79 36 41 99)(2 61 18 110 68 80 37 42 100)(3 62 19 111 69 81 38 43 101)(4 63 20 112 70 82 39 44 102)(5 64 21 113 71 83 27 45 103)(6 65 22 114 72 84 28 46 104)(7 53 23 115 73 85 29 47 92)(8 54 24 116 74 86 30 48 93)(9 55 25 117 75 87 31 49 94)(10 56 26 105 76 88 32 50 95)(11 57 14 106 77 89 33 51 96)(12 58 15 107 78 90 34 52 97)(13 59 16 108 66 91 35 40 98)
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 27)(22 28)(23 29)(24 30)(25 31)(26 32)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 53)(48 54)(49 55)(50 56)(51 57)(52 58)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 105)(89 106)(90 107)(91 108)

G:=sub<Sym(117)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,60,17,109,67,79,36,41,99)(2,61,18,110,68,80,37,42,100)(3,62,19,111,69,81,38,43,101)(4,63,20,112,70,82,39,44,102)(5,64,21,113,71,83,27,45,103)(6,65,22,114,72,84,28,46,104)(7,53,23,115,73,85,29,47,92)(8,54,24,116,74,86,30,48,93)(9,55,25,117,75,87,31,49,94)(10,56,26,105,76,88,32,50,95)(11,57,14,106,77,89,33,51,96)(12,58,15,107,78,90,34,52,97)(13,59,16,108,66,91,35,40,98), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,53)(48,54)(49,55)(50,56)(51,57)(52,58)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,105)(89,106)(90,107)(91,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,60,17,109,67,79,36,41,99)(2,61,18,110,68,80,37,42,100)(3,62,19,111,69,81,38,43,101)(4,63,20,112,70,82,39,44,102)(5,64,21,113,71,83,27,45,103)(6,65,22,114,72,84,28,46,104)(7,53,23,115,73,85,29,47,92)(8,54,24,116,74,86,30,48,93)(9,55,25,117,75,87,31,49,94)(10,56,26,105,76,88,32,50,95)(11,57,14,106,77,89,33,51,96)(12,58,15,107,78,90,34,52,97)(13,59,16,108,66,91,35,40,98), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,53)(48,54)(49,55)(50,56)(51,57)(52,58)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,105)(89,106)(90,107)(91,108) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117)], [(1,60,17,109,67,79,36,41,99),(2,61,18,110,68,80,37,42,100),(3,62,19,111,69,81,38,43,101),(4,63,20,112,70,82,39,44,102),(5,64,21,113,71,83,27,45,103),(6,65,22,114,72,84,28,46,104),(7,53,23,115,73,85,29,47,92),(8,54,24,116,74,86,30,48,93),(9,55,25,117,75,87,31,49,94),(10,56,26,105,76,88,32,50,95),(11,57,14,106,77,89,33,51,96),(12,58,15,107,78,90,34,52,97),(13,59,16,108,66,91,35,40,98)], [(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,27),(22,28),(23,29),(24,30),(25,31),(26,32),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,53),(48,54),(49,55),(50,56),(51,57),(52,58),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,105),(89,106),(90,107),(91,108)])

78 conjugacy classes

class 1  2  3 9A9B9C13A···13L26A···26L39A···39L117A···117AJ
order12399913···1326···2639···39117···117
size1922221···19···92···22···2

78 irreducible representations

dim11112222
type++++
imageC1C2C13C26S3D9S3×C13C13×D9
kernelC13×D9C117D9C9C39C13C3C1
# reps111212131236

Matrix representation of C13×D9 in GL2(𝔽937) generated by

6760
0676
,
465262
675203
,
465262
734472
G:=sub<GL(2,GF(937))| [676,0,0,676],[465,675,262,203],[465,734,262,472] >;

C13×D9 in GAP, Magma, Sage, TeX

C_{13}\times D_9
% in TeX

G:=Group("C13xD9");
// GroupNames label

G:=SmallGroup(234,3);
// by ID

G=gap.SmallGroup(234,3);
# by ID

G:=PCGroup([4,-2,-13,-3,-3,1562,82,2499]);
// Polycyclic

G:=Group<a,b,c|a^13=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C13×D9 in TeX

׿
×
𝔽