Copied to
clipboard

G = C13xD9order 234 = 2·32·13

Direct product of C13 and D9

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C13xD9, C9:C26, C117:3C2, C39.2S3, C3.(S3xC13), SmallGroup(234,3)

Series: Derived Chief Lower central Upper central

C1C9 — C13xD9
C1C3C9C117 — C13xD9
C9 — C13xD9
C1C13

Generators and relations for C13xD9
 G = < a,b,c | a13=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 32 in 12 conjugacy classes, 8 normal (all characteristic)
Quotients: C1, C2, S3, C13, D9, C26, S3xC13, C13xD9
9C2
3S3
9C26
3S3xC13

Smallest permutation representation of C13xD9
On 117 points
Generators in S117
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)
(1 78 93 32 16 88 44 106 60)(2 66 94 33 17 89 45 107 61)(3 67 95 34 18 90 46 108 62)(4 68 96 35 19 91 47 109 63)(5 69 97 36 20 79 48 110 64)(6 70 98 37 21 80 49 111 65)(7 71 99 38 22 81 50 112 53)(8 72 100 39 23 82 51 113 54)(9 73 101 27 24 83 52 114 55)(10 74 102 28 25 84 40 115 56)(11 75 103 29 26 85 41 116 57)(12 76 104 30 14 86 42 117 58)(13 77 92 31 15 87 43 105 59)
(1 60)(2 61)(3 62)(4 63)(5 64)(6 65)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 79)(37 80)(38 81)(39 82)(40 102)(41 103)(42 104)(43 92)(44 93)(45 94)(46 95)(47 96)(48 97)(49 98)(50 99)(51 100)(52 101)(66 107)(67 108)(68 109)(69 110)(70 111)(71 112)(72 113)(73 114)(74 115)(75 116)(76 117)(77 105)(78 106)

G:=sub<Sym(117)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,78,93,32,16,88,44,106,60)(2,66,94,33,17,89,45,107,61)(3,67,95,34,18,90,46,108,62)(4,68,96,35,19,91,47,109,63)(5,69,97,36,20,79,48,110,64)(6,70,98,37,21,80,49,111,65)(7,71,99,38,22,81,50,112,53)(8,72,100,39,23,82,51,113,54)(9,73,101,27,24,83,52,114,55)(10,74,102,28,25,84,40,115,56)(11,75,103,29,26,85,41,116,57)(12,76,104,30,14,86,42,117,58)(13,77,92,31,15,87,43,105,59), (1,60)(2,61)(3,62)(4,63)(5,64)(6,65)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,79)(37,80)(38,81)(39,82)(40,102)(41,103)(42,104)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,99)(51,100)(52,101)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,105)(78,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117), (1,78,93,32,16,88,44,106,60)(2,66,94,33,17,89,45,107,61)(3,67,95,34,18,90,46,108,62)(4,68,96,35,19,91,47,109,63)(5,69,97,36,20,79,48,110,64)(6,70,98,37,21,80,49,111,65)(7,71,99,38,22,81,50,112,53)(8,72,100,39,23,82,51,113,54)(9,73,101,27,24,83,52,114,55)(10,74,102,28,25,84,40,115,56)(11,75,103,29,26,85,41,116,57)(12,76,104,30,14,86,42,117,58)(13,77,92,31,15,87,43,105,59), (1,60)(2,61)(3,62)(4,63)(5,64)(6,65)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,79)(37,80)(38,81)(39,82)(40,102)(41,103)(42,104)(43,92)(44,93)(45,94)(46,95)(47,96)(48,97)(49,98)(50,99)(51,100)(52,101)(66,107)(67,108)(68,109)(69,110)(70,111)(71,112)(72,113)(73,114)(74,115)(75,116)(76,117)(77,105)(78,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117)], [(1,78,93,32,16,88,44,106,60),(2,66,94,33,17,89,45,107,61),(3,67,95,34,18,90,46,108,62),(4,68,96,35,19,91,47,109,63),(5,69,97,36,20,79,48,110,64),(6,70,98,37,21,80,49,111,65),(7,71,99,38,22,81,50,112,53),(8,72,100,39,23,82,51,113,54),(9,73,101,27,24,83,52,114,55),(10,74,102,28,25,84,40,115,56),(11,75,103,29,26,85,41,116,57),(12,76,104,30,14,86,42,117,58),(13,77,92,31,15,87,43,105,59)], [(1,60),(2,61),(3,62),(4,63),(5,64),(6,65),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,79),(37,80),(38,81),(39,82),(40,102),(41,103),(42,104),(43,92),(44,93),(45,94),(46,95),(47,96),(48,97),(49,98),(50,99),(51,100),(52,101),(66,107),(67,108),(68,109),(69,110),(70,111),(71,112),(72,113),(73,114),(74,115),(75,116),(76,117),(77,105),(78,106)]])

78 conjugacy classes

class 1  2  3 9A9B9C13A···13L26A···26L39A···39L117A···117AJ
order12399913···1326···2639···39117···117
size1922221···19···92···22···2

78 irreducible representations

dim11112222
type++++
imageC1C2C13C26S3D9S3xC13C13xD9
kernelC13xD9C117D9C9C39C13C3C1
# reps111212131236

Matrix representation of C13xD9 in GL2(F937) generated by

6760
0676
,
465262
675203
,
465262
734472
G:=sub<GL(2,GF(937))| [676,0,0,676],[465,675,262,203],[465,734,262,472] >;

C13xD9 in GAP, Magma, Sage, TeX

C_{13}\times D_9
% in TeX

G:=Group("C13xD9");
// GroupNames label

G:=SmallGroup(234,3);
// by ID

G=gap.SmallGroup(234,3);
# by ID

G:=PCGroup([4,-2,-13,-3,-3,1562,82,2499]);
// Polycyclic

G:=Group<a,b,c|a^13=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C13xD9 in TeX

׿
x
:
Z
F
o
wr
Q
<