Copied to
clipboard

G = C7×C4.4D4order 224 = 25·7

Direct product of C7 and C4.4D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C4.4D4, C425C14, C28.39D4, C4.4(C7×D4), (C4×C28)⋊12C2, (Q8×C14)⋊9C2, (C2×Q8)⋊2C14, C2.8(D4×C14), C22⋊C45C14, (C2×D4).5C14, C14.71(C2×D4), (D4×C14).12C2, C23.2(C2×C14), C14.44(C4○D4), (C2×C28).66C22, (C2×C14).79C23, (C22×C14).2C22, C22.14(C22×C14), C2.7(C7×C4○D4), (C2×C4).6(C2×C14), (C7×C22⋊C4)⋊13C2, SmallGroup(224,159)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C4.4D4
C1C2C22C2×C14C22×C14C7×C22⋊C4 — C7×C4.4D4
C1C22 — C7×C4.4D4
C1C2×C14 — C7×C4.4D4

Generators and relations for C7×C4.4D4
 G = < a,b,c,d | a7=b4=c4=1, d2=b2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=b2c-1 >

Subgroups: 116 in 76 conjugacy classes, 44 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C14, C14, C14, C42, C22⋊C4, C2×D4, C2×Q8, C28, C28, C2×C14, C2×C14, C4.4D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×C14, C4×C28, C7×C22⋊C4, D4×C14, Q8×C14, C7×C4.4D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C4○D4, C2×C14, C4.4D4, C7×D4, C22×C14, D4×C14, C7×C4○D4, C7×C4.4D4

Smallest permutation representation of C7×C4.4D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 24 47 19)(2 25 48 20)(3 26 49 21)(4 27 43 15)(5 28 44 16)(6 22 45 17)(7 23 46 18)(8 34 112 38)(9 35 106 39)(10 29 107 40)(11 30 108 41)(12 31 109 42)(13 32 110 36)(14 33 111 37)(50 103 63 94)(51 104 57 95)(52 105 58 96)(53 99 59 97)(54 100 60 98)(55 101 61 92)(56 102 62 93)(64 89 73 83)(65 90 74 84)(66 91 75 78)(67 85 76 79)(68 86 77 80)(69 87 71 81)(70 88 72 82)
(1 94 35 91)(2 95 29 85)(3 96 30 86)(4 97 31 87)(5 98 32 88)(6 92 33 89)(7 93 34 90)(8 65 18 62)(9 66 19 63)(10 67 20 57)(11 68 21 58)(12 69 15 59)(13 70 16 60)(14 64 17 61)(22 55 111 73)(23 56 112 74)(24 50 106 75)(25 51 107 76)(26 52 108 77)(27 53 109 71)(28 54 110 72)(36 82 44 100)(37 83 45 101)(38 84 46 102)(39 78 47 103)(40 79 48 104)(41 80 49 105)(42 81 43 99)
(1 75 47 66)(2 76 48 67)(3 77 49 68)(4 71 43 69)(5 72 44 70)(6 73 45 64)(7 74 46 65)(8 102 112 93)(9 103 106 94)(10 104 107 95)(11 105 108 96)(12 99 109 97)(13 100 110 98)(14 101 111 92)(15 81 27 87)(16 82 28 88)(17 83 22 89)(18 84 23 90)(19 78 24 91)(20 79 25 85)(21 80 26 86)(29 51 40 57)(30 52 41 58)(31 53 42 59)(32 54 36 60)(33 55 37 61)(34 56 38 62)(35 50 39 63)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,24,47,19)(2,25,48,20)(3,26,49,21)(4,27,43,15)(5,28,44,16)(6,22,45,17)(7,23,46,18)(8,34,112,38)(9,35,106,39)(10,29,107,40)(11,30,108,41)(12,31,109,42)(13,32,110,36)(14,33,111,37)(50,103,63,94)(51,104,57,95)(52,105,58,96)(53,99,59,97)(54,100,60,98)(55,101,61,92)(56,102,62,93)(64,89,73,83)(65,90,74,84)(66,91,75,78)(67,85,76,79)(68,86,77,80)(69,87,71,81)(70,88,72,82), (1,94,35,91)(2,95,29,85)(3,96,30,86)(4,97,31,87)(5,98,32,88)(6,92,33,89)(7,93,34,90)(8,65,18,62)(9,66,19,63)(10,67,20,57)(11,68,21,58)(12,69,15,59)(13,70,16,60)(14,64,17,61)(22,55,111,73)(23,56,112,74)(24,50,106,75)(25,51,107,76)(26,52,108,77)(27,53,109,71)(28,54,110,72)(36,82,44,100)(37,83,45,101)(38,84,46,102)(39,78,47,103)(40,79,48,104)(41,80,49,105)(42,81,43,99), (1,75,47,66)(2,76,48,67)(3,77,49,68)(4,71,43,69)(5,72,44,70)(6,73,45,64)(7,74,46,65)(8,102,112,93)(9,103,106,94)(10,104,107,95)(11,105,108,96)(12,99,109,97)(13,100,110,98)(14,101,111,92)(15,81,27,87)(16,82,28,88)(17,83,22,89)(18,84,23,90)(19,78,24,91)(20,79,25,85)(21,80,26,86)(29,51,40,57)(30,52,41,58)(31,53,42,59)(32,54,36,60)(33,55,37,61)(34,56,38,62)(35,50,39,63)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,24,47,19)(2,25,48,20)(3,26,49,21)(4,27,43,15)(5,28,44,16)(6,22,45,17)(7,23,46,18)(8,34,112,38)(9,35,106,39)(10,29,107,40)(11,30,108,41)(12,31,109,42)(13,32,110,36)(14,33,111,37)(50,103,63,94)(51,104,57,95)(52,105,58,96)(53,99,59,97)(54,100,60,98)(55,101,61,92)(56,102,62,93)(64,89,73,83)(65,90,74,84)(66,91,75,78)(67,85,76,79)(68,86,77,80)(69,87,71,81)(70,88,72,82), (1,94,35,91)(2,95,29,85)(3,96,30,86)(4,97,31,87)(5,98,32,88)(6,92,33,89)(7,93,34,90)(8,65,18,62)(9,66,19,63)(10,67,20,57)(11,68,21,58)(12,69,15,59)(13,70,16,60)(14,64,17,61)(22,55,111,73)(23,56,112,74)(24,50,106,75)(25,51,107,76)(26,52,108,77)(27,53,109,71)(28,54,110,72)(36,82,44,100)(37,83,45,101)(38,84,46,102)(39,78,47,103)(40,79,48,104)(41,80,49,105)(42,81,43,99), (1,75,47,66)(2,76,48,67)(3,77,49,68)(4,71,43,69)(5,72,44,70)(6,73,45,64)(7,74,46,65)(8,102,112,93)(9,103,106,94)(10,104,107,95)(11,105,108,96)(12,99,109,97)(13,100,110,98)(14,101,111,92)(15,81,27,87)(16,82,28,88)(17,83,22,89)(18,84,23,90)(19,78,24,91)(20,79,25,85)(21,80,26,86)(29,51,40,57)(30,52,41,58)(31,53,42,59)(32,54,36,60)(33,55,37,61)(34,56,38,62)(35,50,39,63) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,24,47,19),(2,25,48,20),(3,26,49,21),(4,27,43,15),(5,28,44,16),(6,22,45,17),(7,23,46,18),(8,34,112,38),(9,35,106,39),(10,29,107,40),(11,30,108,41),(12,31,109,42),(13,32,110,36),(14,33,111,37),(50,103,63,94),(51,104,57,95),(52,105,58,96),(53,99,59,97),(54,100,60,98),(55,101,61,92),(56,102,62,93),(64,89,73,83),(65,90,74,84),(66,91,75,78),(67,85,76,79),(68,86,77,80),(69,87,71,81),(70,88,72,82)], [(1,94,35,91),(2,95,29,85),(3,96,30,86),(4,97,31,87),(5,98,32,88),(6,92,33,89),(7,93,34,90),(8,65,18,62),(9,66,19,63),(10,67,20,57),(11,68,21,58),(12,69,15,59),(13,70,16,60),(14,64,17,61),(22,55,111,73),(23,56,112,74),(24,50,106,75),(25,51,107,76),(26,52,108,77),(27,53,109,71),(28,54,110,72),(36,82,44,100),(37,83,45,101),(38,84,46,102),(39,78,47,103),(40,79,48,104),(41,80,49,105),(42,81,43,99)], [(1,75,47,66),(2,76,48,67),(3,77,49,68),(4,71,43,69),(5,72,44,70),(6,73,45,64),(7,74,46,65),(8,102,112,93),(9,103,106,94),(10,104,107,95),(11,105,108,96),(12,99,109,97),(13,100,110,98),(14,101,111,92),(15,81,27,87),(16,82,28,88),(17,83,22,89),(18,84,23,90),(19,78,24,91),(20,79,25,85),(21,80,26,86),(29,51,40,57),(30,52,41,58),(31,53,42,59),(32,54,36,60),(33,55,37,61),(34,56,38,62),(35,50,39,63)]])

C7×C4.4D4 is a maximal subgroup of
C42.7D14  C422Dic7  C42.Dic7  C42.61D14  C42.62D14  C42.213D14  D28.23D4  C42.64D14  C42.214D14  C42.65D14  C425D14  D28.14D4  C42.233D14  C42.137D14  C42.138D14  C42.139D14  C42.140D14  C4218D14  C42.141D14  D2810D4  Dic1410D4  C4220D14  C4221D14  C42.234D14  C42.143D14  C42.144D14  C4222D14  C42.145D14

98 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H7A···7F14A···14R14S···14AD28A···28AJ28AK···28AV
order1222224···4447···714···1414···1428···2828···28
size1111442···2441···11···14···42···24···4

98 irreducible representations

dim11111111112222
type++++++
imageC1C2C2C2C2C7C14C14C14C14D4C4○D4C7×D4C7×C4○D4
kernelC7×C4.4D4C4×C28C7×C22⋊C4D4×C14Q8×C14C4.4D4C42C22⋊C4C2×D4C2×Q8C28C14C4C2
# reps11411662466241224

Matrix representation of C7×C4.4D4 in GL4(𝔽29) generated by

23000
02300
00160
00016
,
17000
51200
001724
00012
,
28000
27100
00120
00012
,
121700
01700
00127
00128
G:=sub<GL(4,GF(29))| [23,0,0,0,0,23,0,0,0,0,16,0,0,0,0,16],[17,5,0,0,0,12,0,0,0,0,17,0,0,0,24,12],[28,27,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,17,17,0,0,0,0,1,1,0,0,27,28] >;

C7×C4.4D4 in GAP, Magma, Sage, TeX

C_7\times C_4._4D_4
% in TeX

G:=Group("C7xC4.4D4");
// GroupNames label

G:=SmallGroup(224,159);
// by ID

G=gap.SmallGroup(224,159);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,679,2090,266]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽