Copied to
clipboard

G = D2810D4order 448 = 26·7

3rd semidirect product of D28 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2810D4, C4219D14, C14.1252+ 1+4, C4.70(D4×D7), (C4×D28)⋊43C2, C79(D45D4), (C2×Q8)⋊19D14, C28.63(C2×D4), C282D433C2, (C4×C28)⋊23C22, C22⋊C433D14, D14.24(C2×D4), C4.4D410D7, D1411(C4○D4), C22⋊D2824C2, D14⋊D440C2, D14⋊C454C22, D143Q828C2, (C2×D4).173D14, (C2×D28)⋊28C22, C4⋊Dic760C22, (Q8×C14)⋊13C22, C14.90(C22×D4), D14.D442C2, (C2×C28).601C23, (C2×C14).220C24, Dic7⋊C426C22, C2.49(D48D14), C23.D733C22, C23.42(C22×D7), (D4×C14).155C22, (C22×C14).50C23, (C23×D7).64C22, C22.241(C23×D7), (C2×Dic7).115C23, (C22×D7).215C23, (C2×D4×D7)⋊17C2, C2.63(C2×D4×D7), C2.76(D7×C4○D4), (C2×C4×D7)⋊26C22, (D7×C22⋊C4)⋊17C2, (C2×Q82D7)⋊11C2, C14.187(C2×C4○D4), (C7×C4.4D4)⋊12C2, (C2×C7⋊D4)⋊23C22, (C7×C22⋊C4)⋊29C22, (C2×C4).195(C22×D7), SmallGroup(448,1129)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D2810D4
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — D2810D4
C7C2×C14 — D2810D4
C1C22C4.4D4

Generators and relations for D2810D4
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, dad=a13, cbc-1=a14b, dbd=a26b, dcd=c-1 >

Subgroups: 1932 in 334 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×D7, C22×D7, C22×C14, D45D4, Dic7⋊C4, C4⋊Dic7, D14⋊C4, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, D4×D7, Q82D7, C2×C7⋊D4, D4×C14, Q8×C14, C23×D7, C4×D28, D7×C22⋊C4, C22⋊D28, D14.D4, D14⋊D4, C282D4, D143Q8, C7×C4.4D4, C2×D4×D7, C2×Q82D7, D2810D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, 2+ 1+4, C22×D7, D45D4, D4×D7, C23×D7, C2×D4×D7, D7×C4○D4, D48D14, D2810D4

Smallest permutation representation of D2810D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 28)(23 27)(24 26)(29 53)(30 52)(31 51)(32 50)(33 49)(34 48)(35 47)(36 46)(37 45)(38 44)(39 43)(40 42)(54 56)(57 59)(60 84)(61 83)(62 82)(63 81)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)(85 91)(86 90)(87 89)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)(99 105)(100 104)(101 103)
(1 83 92 52)(2 84 93 53)(3 57 94 54)(4 58 95 55)(5 59 96 56)(6 60 97 29)(7 61 98 30)(8 62 99 31)(9 63 100 32)(10 64 101 33)(11 65 102 34)(12 66 103 35)(13 67 104 36)(14 68 105 37)(15 69 106 38)(16 70 107 39)(17 71 108 40)(18 72 109 41)(19 73 110 42)(20 74 111 43)(21 75 112 44)(22 76 85 45)(23 77 86 46)(24 78 87 47)(25 79 88 48)(26 80 89 49)(27 81 90 50)(28 82 91 51)
(1 52)(2 37)(3 50)(4 35)(5 48)(6 33)(7 46)(8 31)(9 44)(10 29)(11 42)(12 55)(13 40)(14 53)(15 38)(16 51)(17 36)(18 49)(19 34)(20 47)(21 32)(22 45)(23 30)(24 43)(25 56)(26 41)(27 54)(28 39)(57 90)(58 103)(59 88)(60 101)(61 86)(62 99)(63 112)(64 97)(65 110)(66 95)(67 108)(68 93)(69 106)(70 91)(71 104)(72 89)(73 102)(74 87)(75 100)(76 85)(77 98)(78 111)(79 96)(80 109)(81 94)(82 107)(83 92)(84 105)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,59)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(85,91)(86,90)(87,89)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,83,92,52)(2,84,93,53)(3,57,94,54)(4,58,95,55)(5,59,96,56)(6,60,97,29)(7,61,98,30)(8,62,99,31)(9,63,100,32)(10,64,101,33)(11,65,102,34)(12,66,103,35)(13,67,104,36)(14,68,105,37)(15,69,106,38)(16,70,107,39)(17,71,108,40)(18,72,109,41)(19,73,110,42)(20,74,111,43)(21,75,112,44)(22,76,85,45)(23,77,86,46)(24,78,87,47)(25,79,88,48)(26,80,89,49)(27,81,90,50)(28,82,91,51), (1,52)(2,37)(3,50)(4,35)(5,48)(6,33)(7,46)(8,31)(9,44)(10,29)(11,42)(12,55)(13,40)(14,53)(15,38)(16,51)(17,36)(18,49)(19,34)(20,47)(21,32)(22,45)(23,30)(24,43)(25,56)(26,41)(27,54)(28,39)(57,90)(58,103)(59,88)(60,101)(61,86)(62,99)(63,112)(64,97)(65,110)(66,95)(67,108)(68,93)(69,106)(70,91)(71,104)(72,89)(73,102)(74,87)(75,100)(76,85)(77,98)(78,111)(79,96)(80,109)(81,94)(82,107)(83,92)(84,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(29,53)(30,52)(31,51)(32,50)(33,49)(34,48)(35,47)(36,46)(37,45)(38,44)(39,43)(40,42)(54,56)(57,59)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)(85,91)(86,90)(87,89)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)(99,105)(100,104)(101,103), (1,83,92,52)(2,84,93,53)(3,57,94,54)(4,58,95,55)(5,59,96,56)(6,60,97,29)(7,61,98,30)(8,62,99,31)(9,63,100,32)(10,64,101,33)(11,65,102,34)(12,66,103,35)(13,67,104,36)(14,68,105,37)(15,69,106,38)(16,70,107,39)(17,71,108,40)(18,72,109,41)(19,73,110,42)(20,74,111,43)(21,75,112,44)(22,76,85,45)(23,77,86,46)(24,78,87,47)(25,79,88,48)(26,80,89,49)(27,81,90,50)(28,82,91,51), (1,52)(2,37)(3,50)(4,35)(5,48)(6,33)(7,46)(8,31)(9,44)(10,29)(11,42)(12,55)(13,40)(14,53)(15,38)(16,51)(17,36)(18,49)(19,34)(20,47)(21,32)(22,45)(23,30)(24,43)(25,56)(26,41)(27,54)(28,39)(57,90)(58,103)(59,88)(60,101)(61,86)(62,99)(63,112)(64,97)(65,110)(66,95)(67,108)(68,93)(69,106)(70,91)(71,104)(72,89)(73,102)(74,87)(75,100)(76,85)(77,98)(78,111)(79,96)(80,109)(81,94)(82,107)(83,92)(84,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,28),(23,27),(24,26),(29,53),(30,52),(31,51),(32,50),(33,49),(34,48),(35,47),(36,46),(37,45),(38,44),(39,43),(40,42),(54,56),(57,59),(60,84),(61,83),(62,82),(63,81),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73),(85,91),(86,90),(87,89),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106),(99,105),(100,104),(101,103)], [(1,83,92,52),(2,84,93,53),(3,57,94,54),(4,58,95,55),(5,59,96,56),(6,60,97,29),(7,61,98,30),(8,62,99,31),(9,63,100,32),(10,64,101,33),(11,65,102,34),(12,66,103,35),(13,67,104,36),(14,68,105,37),(15,69,106,38),(16,70,107,39),(17,71,108,40),(18,72,109,41),(19,73,110,42),(20,74,111,43),(21,75,112,44),(22,76,85,45),(23,77,86,46),(24,78,87,47),(25,79,88,48),(26,80,89,49),(27,81,90,50),(28,82,91,51)], [(1,52),(2,37),(3,50),(4,35),(5,48),(6,33),(7,46),(8,31),(9,44),(10,29),(11,42),(12,55),(13,40),(14,53),(15,38),(16,51),(17,36),(18,49),(19,34),(20,47),(21,32),(22,45),(23,30),(24,43),(25,56),(26,41),(27,54),(28,39),(57,90),(58,103),(59,88),(60,101),(61,86),(62,99),(63,112),(64,97),(65,110),(66,95),(67,108),(68,93),(69,106),(70,91),(71,104),(72,89),(73,102),(74,87),(75,100),(76,85),(77,98),(78,111),(79,96),(80,109),(81,94),(82,107),(83,92),(84,105)]])

67 conjugacy classes

class 1 2A2B2C2D2E2F···2K2L4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14I14J···14O28A···28R28S···28X
order1222222···2244444444444477714···1414···1428···2828···28
size11114414···1428222244414142828282222···28···84···48···8

67 irreducible representations

dim1111111111122222224444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D142+ 1+4D4×D7D7×C4○D4D48D14
kernelD2810D4C4×D28D7×C22⋊C4C22⋊D28D14.D4D14⋊D4C282D4D143Q8C7×C4.4D4C2×D4×D7C2×Q82D7D28C4.4D4D14C42C22⋊C4C2×D4C2×Q8C14C4C2C2
# reps12222211111434312331666

Matrix representation of D2810D4 in GL6(𝔽29)

430000
14180000
0028000
0002800
00001216
0000017
,
410000
14250000
0028000
0002800
000010
00001328
,
2800000
0280000
000100
0028000
0000111
0000028
,
0210000
1800000
0002800
0028000
0000111
0000028

G:=sub<GL(6,GF(29))| [4,14,0,0,0,0,3,18,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,12,0,0,0,0,0,16,17],[4,14,0,0,0,0,1,25,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,13,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,11,28],[0,18,0,0,0,0,21,0,0,0,0,0,0,0,0,28,0,0,0,0,28,0,0,0,0,0,0,0,1,0,0,0,0,0,11,28] >;

D2810D4 in GAP, Magma, Sage, TeX

D_{28}\rtimes_{10}D_4
% in TeX

G:=Group("D28:10D4");
// GroupNames label

G:=SmallGroup(448,1129);
// by ID

G=gap.SmallGroup(448,1129);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,1571,570,297,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^13,c*b*c^-1=a^14*b,d*b*d=a^26*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽