Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C14

Direct product G=N×Q with N=C2×D4 and Q=C14
dρLabelID
D4×C2×C14112D4xC2xC14224,190

Semidirect products G=N:Q with N=C2×D4 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C14 = C7×C22≀C2φ: C14/C7C2 ⊆ Out C2×D456(C2xD4):1C14224,155
(C2×D4)⋊2C14 = C7×C4⋊D4φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4):2C14224,156
(C2×D4)⋊3C14 = C7×C41D4φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4):3C14224,162
(C2×D4)⋊4C14 = C14×D8φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4):4C14224,167
(C2×D4)⋊5C14 = C7×C8⋊C22φ: C14/C7C2 ⊆ Out C2×D4564(C2xD4):5C14224,171
(C2×D4)⋊6C14 = C7×2+ 1+4φ: C14/C7C2 ⊆ Out C2×D4564(C2xD4):6C14224,193
(C2×D4)⋊7C14 = C14×C4○D4φ: trivial image112(C2xD4):7C14224,192

Non-split extensions G=N.Q with N=C2×D4 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2×D4).1C14 = C7×C23⋊C4φ: C14/C7C2 ⊆ Out C2×D4564(C2xD4).1C14224,48
(C2×D4).2C14 = C7×C4.D4φ: C14/C7C2 ⊆ Out C2×D4564(C2xD4).2C14224,49
(C2×D4).3C14 = C7×D4⋊C4φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4).3C14224,51
(C2×D4).4C14 = C7×C22.D4φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4).4C14224,158
(C2×D4).5C14 = C7×C4.4D4φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4).5C14224,159
(C2×D4).6C14 = C14×SD16φ: C14/C7C2 ⊆ Out C2×D4112(C2xD4).6C14224,168
(C2×D4).7C14 = D4×C28φ: trivial image112(C2xD4).7C14224,153

׿
×
𝔽