Copied to
clipboard

G = C7×C41D4order 224 = 25·7

Direct product of C7 and C41D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C41D4, C286D4, C426C14, C41(C7×D4), (C4×C28)⋊13C2, (C2×D4)⋊3C14, C2.9(D4×C14), (D4×C14)⋊12C2, C14.72(C2×D4), C23.4(C2×C14), (C2×C14).82C23, (C2×C28).125C22, (C22×C14).4C22, C22.17(C22×C14), (C2×C4).23(C2×C14), SmallGroup(224,162)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C41D4
C1C2C22C2×C14C22×C14D4×C14 — C7×C41D4
C1C22 — C7×C41D4
C1C2×C14 — C7×C41D4

Generators and relations for C7×C41D4
 G = < a,b,c,d | a7=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 180 in 108 conjugacy classes, 52 normal (8 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, D4, C23, C14, C14, C42, C2×D4, C28, C2×C14, C2×C14, C41D4, C2×C28, C7×D4, C22×C14, C4×C28, D4×C14, C7×C41D4
Quotients: C1, C2, C22, C7, D4, C23, C14, C2×D4, C2×C14, C41D4, C7×D4, C22×C14, D4×C14, C7×C41D4

Smallest permutation representation of C7×C41D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 106 43 9)(2 107 44 10)(3 108 45 11)(4 109 46 12)(5 110 47 13)(6 111 48 14)(7 112 49 8)(15 35 24 39)(16 29 25 40)(17 30 26 41)(18 31 27 42)(19 32 28 36)(20 33 22 37)(21 34 23 38)(50 91 63 78)(51 85 57 79)(52 86 58 80)(53 87 59 81)(54 88 60 82)(55 89 61 83)(56 90 62 84)(64 104 76 92)(65 105 77 93)(66 99 71 94)(67 100 72 95)(68 101 73 96)(69 102 74 97)(70 103 75 98)
(1 63 35 66)(2 57 29 67)(3 58 30 68)(4 59 31 69)(5 60 32 70)(6 61 33 64)(7 62 34 65)(8 90 21 93)(9 91 15 94)(10 85 16 95)(11 86 17 96)(12 87 18 97)(13 88 19 98)(14 89 20 92)(22 104 111 83)(23 105 112 84)(24 99 106 78)(25 100 107 79)(26 101 108 80)(27 102 109 81)(28 103 110 82)(36 75 47 54)(37 76 48 55)(38 77 49 56)(39 71 43 50)(40 72 44 51)(41 73 45 52)(42 74 46 53)
(1 91)(2 85)(3 86)(4 87)(5 88)(6 89)(7 90)(8 62)(9 63)(10 57)(11 58)(12 59)(13 60)(14 61)(15 66)(16 67)(17 68)(18 69)(19 70)(20 64)(21 65)(22 76)(23 77)(24 71)(25 72)(26 73)(27 74)(28 75)(29 95)(30 96)(31 97)(32 98)(33 92)(34 93)(35 94)(36 103)(37 104)(38 105)(39 99)(40 100)(41 101)(42 102)(43 78)(44 79)(45 80)(46 81)(47 82)(48 83)(49 84)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,106,43,9)(2,107,44,10)(3,108,45,11)(4,109,46,12)(5,110,47,13)(6,111,48,14)(7,112,49,8)(15,35,24,39)(16,29,25,40)(17,30,26,41)(18,31,27,42)(19,32,28,36)(20,33,22,37)(21,34,23,38)(50,91,63,78)(51,85,57,79)(52,86,58,80)(53,87,59,81)(54,88,60,82)(55,89,61,83)(56,90,62,84)(64,104,76,92)(65,105,77,93)(66,99,71,94)(67,100,72,95)(68,101,73,96)(69,102,74,97)(70,103,75,98), (1,63,35,66)(2,57,29,67)(3,58,30,68)(4,59,31,69)(5,60,32,70)(6,61,33,64)(7,62,34,65)(8,90,21,93)(9,91,15,94)(10,85,16,95)(11,86,17,96)(12,87,18,97)(13,88,19,98)(14,89,20,92)(22,104,111,83)(23,105,112,84)(24,99,106,78)(25,100,107,79)(26,101,108,80)(27,102,109,81)(28,103,110,82)(36,75,47,54)(37,76,48,55)(38,77,49,56)(39,71,43,50)(40,72,44,51)(41,73,45,52)(42,74,46,53), (1,91)(2,85)(3,86)(4,87)(5,88)(6,89)(7,90)(8,62)(9,63)(10,57)(11,58)(12,59)(13,60)(14,61)(15,66)(16,67)(17,68)(18,69)(19,70)(20,64)(21,65)(22,76)(23,77)(24,71)(25,72)(26,73)(27,74)(28,75)(29,95)(30,96)(31,97)(32,98)(33,92)(34,93)(35,94)(36,103)(37,104)(38,105)(39,99)(40,100)(41,101)(42,102)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,106,43,9)(2,107,44,10)(3,108,45,11)(4,109,46,12)(5,110,47,13)(6,111,48,14)(7,112,49,8)(15,35,24,39)(16,29,25,40)(17,30,26,41)(18,31,27,42)(19,32,28,36)(20,33,22,37)(21,34,23,38)(50,91,63,78)(51,85,57,79)(52,86,58,80)(53,87,59,81)(54,88,60,82)(55,89,61,83)(56,90,62,84)(64,104,76,92)(65,105,77,93)(66,99,71,94)(67,100,72,95)(68,101,73,96)(69,102,74,97)(70,103,75,98), (1,63,35,66)(2,57,29,67)(3,58,30,68)(4,59,31,69)(5,60,32,70)(6,61,33,64)(7,62,34,65)(8,90,21,93)(9,91,15,94)(10,85,16,95)(11,86,17,96)(12,87,18,97)(13,88,19,98)(14,89,20,92)(22,104,111,83)(23,105,112,84)(24,99,106,78)(25,100,107,79)(26,101,108,80)(27,102,109,81)(28,103,110,82)(36,75,47,54)(37,76,48,55)(38,77,49,56)(39,71,43,50)(40,72,44,51)(41,73,45,52)(42,74,46,53), (1,91)(2,85)(3,86)(4,87)(5,88)(6,89)(7,90)(8,62)(9,63)(10,57)(11,58)(12,59)(13,60)(14,61)(15,66)(16,67)(17,68)(18,69)(19,70)(20,64)(21,65)(22,76)(23,77)(24,71)(25,72)(26,73)(27,74)(28,75)(29,95)(30,96)(31,97)(32,98)(33,92)(34,93)(35,94)(36,103)(37,104)(38,105)(39,99)(40,100)(41,101)(42,102)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,106,43,9),(2,107,44,10),(3,108,45,11),(4,109,46,12),(5,110,47,13),(6,111,48,14),(7,112,49,8),(15,35,24,39),(16,29,25,40),(17,30,26,41),(18,31,27,42),(19,32,28,36),(20,33,22,37),(21,34,23,38),(50,91,63,78),(51,85,57,79),(52,86,58,80),(53,87,59,81),(54,88,60,82),(55,89,61,83),(56,90,62,84),(64,104,76,92),(65,105,77,93),(66,99,71,94),(67,100,72,95),(68,101,73,96),(69,102,74,97),(70,103,75,98)], [(1,63,35,66),(2,57,29,67),(3,58,30,68),(4,59,31,69),(5,60,32,70),(6,61,33,64),(7,62,34,65),(8,90,21,93),(9,91,15,94),(10,85,16,95),(11,86,17,96),(12,87,18,97),(13,88,19,98),(14,89,20,92),(22,104,111,83),(23,105,112,84),(24,99,106,78),(25,100,107,79),(26,101,108,80),(27,102,109,81),(28,103,110,82),(36,75,47,54),(37,76,48,55),(38,77,49,56),(39,71,43,50),(40,72,44,51),(41,73,45,52),(42,74,46,53)], [(1,91),(2,85),(3,86),(4,87),(5,88),(6,89),(7,90),(8,62),(9,63),(10,57),(11,58),(12,59),(13,60),(14,61),(15,66),(16,67),(17,68),(18,69),(19,70),(20,64),(21,65),(22,76),(23,77),(24,71),(25,72),(26,73),(27,74),(28,75),(29,95),(30,96),(31,97),(32,98),(33,92),(34,93),(35,94),(36,103),(37,104),(38,105),(39,99),(40,100),(41,101),(42,102),(43,78),(44,79),(45,80),(46,81),(47,82),(48,83),(49,84),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)]])

C7×C41D4 is a maximal subgroup of
C28.9D8  C423Dic7  C28.16D8  C42.72D14  C282D8  C28⋊D8  C42.74D14  Dic149D4  C284SD16  D285D4  C42.166D14  C4226D14  C42.238D14  D2811D4  Dic1411D4  C42.168D14  C4228D14  C7×D42

98 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F7A···7F14A···14R14S···14AP28A···28AJ
order122222224···47···714···1414···1428···28
size111144442···21···11···14···42···2

98 irreducible representations

dim11111122
type++++
imageC1C2C2C7C14C14D4C7×D4
kernelC7×C41D4C4×C28D4×C14C41D4C42C2×D4C28C4
# reps1166636636

Matrix representation of C7×C41D4 in GL4(𝔽29) generated by

24000
02400
00250
00025
,
28000
02800
0001
00280
,
0100
28000
0001
00280
,
0100
1000
0010
00028
G:=sub<GL(4,GF(29))| [24,0,0,0,0,24,0,0,0,0,25,0,0,0,0,25],[28,0,0,0,0,28,0,0,0,0,0,28,0,0,1,0],[0,28,0,0,1,0,0,0,0,0,0,28,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,28] >;

C7×C41D4 in GAP, Magma, Sage, TeX

C_7\times C_4\rtimes_1D_4
% in TeX

G:=Group("C7xC4:1D4");
// GroupNames label

G:=SmallGroup(224,162);
// by ID

G=gap.SmallGroup(224,162);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,343,2090,518]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽