Extensions 1→N→G→Q→1 with N=C2×C20 and Q=C6

Direct product G=N×Q with N=C2×C20 and Q=C6
dρLabelID
C22×C60240C2^2xC60240,185

Semidirect products G=N:Q with N=C2×C20 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C20)⋊1C6 = C3×D10⋊C4φ: C6/C3C2 ⊆ Aut C2×C20120(C2xC20):1C6240,43
(C2×C20)⋊2C6 = C15×C22⋊C4φ: C6/C3C2 ⊆ Aut C2×C20120(C2xC20):2C6240,82
(C2×C20)⋊3C6 = C6×D20φ: C6/C3C2 ⊆ Aut C2×C20120(C2xC20):3C6240,157
(C2×C20)⋊4C6 = C3×C4○D20φ: C6/C3C2 ⊆ Aut C2×C201202(C2xC20):4C6240,158
(C2×C20)⋊5C6 = D5×C2×C12φ: C6/C3C2 ⊆ Aut C2×C20120(C2xC20):5C6240,156
(C2×C20)⋊6C6 = D4×C30φ: C6/C3C2 ⊆ Aut C2×C20120(C2xC20):6C6240,186
(C2×C20)⋊7C6 = C15×C4○D4φ: C6/C3C2 ⊆ Aut C2×C201202(C2xC20):7C6240,188

Non-split extensions G=N.Q with N=C2×C20 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C20).1C6 = C3×C10.D4φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).1C6240,41
(C2×C20).2C6 = C15×C4⋊C4φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).2C6240,83
(C2×C20).3C6 = C3×C4⋊Dic5φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).3C6240,42
(C2×C20).4C6 = C6×Dic10φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).4C6240,155
(C2×C20).5C6 = C3×C4.Dic5φ: C6/C3C2 ⊆ Aut C2×C201202(C2xC20).5C6240,39
(C2×C20).6C6 = C6×C52C8φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).6C6240,38
(C2×C20).7C6 = C12×Dic5φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).7C6240,40
(C2×C20).8C6 = C15×M4(2)φ: C6/C3C2 ⊆ Aut C2×C201202(C2xC20).8C6240,85
(C2×C20).9C6 = Q8×C30φ: C6/C3C2 ⊆ Aut C2×C20240(C2xC20).9C6240,187

׿
×
𝔽