Extensions 1→N→G→Q→1 with N=C4×S3 and Q=D5

Direct product G=N×Q with N=C4×S3 and Q=D5
dρLabelID
C4×S3×D5604C4xS3xD5240,135

Semidirect products G=N:Q with N=C4×S3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1D5 = D205S3φ: D5/C5C2 ⊆ Out C4×S31204-(C4xS3):1D5240,126
(C4×S3)⋊2D5 = D60⋊C2φ: D5/C5C2 ⊆ Out C4×S31204+(C4xS3):2D5240,130
(C4×S3)⋊3D5 = S3×D20φ: D5/C5C2 ⊆ Out C4×S3604+(C4xS3):3D5240,137
(C4×S3)⋊4D5 = D6.D10φ: D5/C5C2 ⊆ Out C4×S31204(C4xS3):4D5240,132

Non-split extensions G=N.Q with N=C4×S3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4×S3).1D5 = S3×Dic10φ: D5/C5C2 ⊆ Out C4×S31204-(C4xS3).1D5240,128
(C4×S3).2D5 = D6.Dic5φ: D5/C5C2 ⊆ Out C4×S31204(C4xS3).2D5240,11
(C4×S3).3D5 = S3×C52C8φ: trivial image1204(C4xS3).3D5240,8

׿
×
𝔽