Extensions 1→N→G→Q→1 with N=C2×C8 and Q=D7

Direct product G=N×Q with N=C2×C8 and Q=D7
dρLabelID
D7×C2×C8112D7xC2xC8224,94

Semidirect products G=N:Q with N=C2×C8 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1D7 = D14⋊C8φ: D7/C7C2 ⊆ Aut C2×C8112(C2xC8):1D7224,26
(C2×C8)⋊2D7 = C2.D56φ: D7/C7C2 ⊆ Aut C2×C8112(C2xC8):2D7224,27
(C2×C8)⋊3D7 = C2×D56φ: D7/C7C2 ⊆ Aut C2×C8112(C2xC8):3D7224,98
(C2×C8)⋊4D7 = D567C2φ: D7/C7C2 ⊆ Aut C2×C81122(C2xC8):4D7224,99
(C2×C8)⋊5D7 = C2×C56⋊C2φ: D7/C7C2 ⊆ Aut C2×C8112(C2xC8):5D7224,97
(C2×C8)⋊6D7 = C2×C8⋊D7φ: D7/C7C2 ⊆ Aut C2×C8112(C2xC8):6D7224,95
(C2×C8)⋊7D7 = D28.2C4φ: D7/C7C2 ⊆ Aut C2×C81122(C2xC8):7D7224,96

Non-split extensions G=N.Q with N=C2×C8 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C2×C8).1D7 = Dic7⋊C8φ: D7/C7C2 ⊆ Aut C2×C8224(C2xC8).1D7224,20
(C2×C8).2D7 = C28.44D4φ: D7/C7C2 ⊆ Aut C2×C8224(C2xC8).2D7224,22
(C2×C8).3D7 = C561C4φ: D7/C7C2 ⊆ Aut C2×C8224(C2xC8).3D7224,24
(C2×C8).4D7 = C2×Dic28φ: D7/C7C2 ⊆ Aut C2×C8224(C2xC8).4D7224,100
(C2×C8).5D7 = C56.C4φ: D7/C7C2 ⊆ Aut C2×C81122(C2xC8).5D7224,25
(C2×C8).6D7 = C8⋊Dic7φ: D7/C7C2 ⊆ Aut C2×C8224(C2xC8).6D7224,23
(C2×C8).7D7 = C28.C8φ: D7/C7C2 ⊆ Aut C2×C81122(C2xC8).7D7224,18
(C2×C8).8D7 = C56⋊C4φ: D7/C7C2 ⊆ Aut C2×C8224(C2xC8).8D7224,21
(C2×C8).9D7 = C2×C7⋊C16central extension (φ=1)224(C2xC8).9D7224,17
(C2×C8).10D7 = C8×Dic7central extension (φ=1)224(C2xC8).10D7224,19

׿
×
𝔽