Copied to
clipboard

G = C56.C4order 224 = 25·7

1st non-split extension by C56 of C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C56.1C4, C4.18D28, C28.34D4, C8.1Dic7, C22.2Dic14, (C2×C8).5D7, (C2×C56).7C2, C14.7(C4⋊C4), (C2×C14).3Q8, C71(C8.C4), C28.35(C2×C4), (C2×C4).70D14, C4.8(C2×Dic7), C2.5(C4⋊Dic7), C4.Dic7.1C2, (C2×C28).97C22, SmallGroup(224,25)

Series: Derived Chief Lower central Upper central

C1C28 — C56.C4
C1C7C14C28C2×C28C4.Dic7 — C56.C4
C7C14C28 — C56.C4
C1C4C2×C4C2×C8

Generators and relations for C56.C4
 G = < a,b,c | a8=1, b14=a4, c2=a4b7, ab=ba, cac-1=a-1, cbc-1=b13 >

2C2
2C14
14C8
14C8
7M4(2)
7M4(2)
2C7⋊C8
2C7⋊C8
7C8.C4

Smallest permutation representation of C56.C4
On 112 points
Generators in S112
(1 52 22 45 15 38 8 31)(2 53 23 46 16 39 9 32)(3 54 24 47 17 40 10 33)(4 55 25 48 18 41 11 34)(5 56 26 49 19 42 12 35)(6 29 27 50 20 43 13 36)(7 30 28 51 21 44 14 37)(57 85 64 92 71 99 78 106)(58 86 65 93 72 100 79 107)(59 87 66 94 73 101 80 108)(60 88 67 95 74 102 81 109)(61 89 68 96 75 103 82 110)(62 90 69 97 76 104 83 111)(63 91 70 98 77 105 84 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 64 22 57 15 78 8 71)(2 77 23 70 16 63 9 84)(3 62 24 83 17 76 10 69)(4 75 25 68 18 61 11 82)(5 60 26 81 19 74 12 67)(6 73 27 66 20 59 13 80)(7 58 28 79 21 72 14 65)(29 94 50 87 43 108 36 101)(30 107 51 100 44 93 37 86)(31 92 52 85 45 106 38 99)(32 105 53 98 46 91 39 112)(33 90 54 111 47 104 40 97)(34 103 55 96 48 89 41 110)(35 88 56 109 49 102 42 95)

G:=sub<Sym(112)| (1,52,22,45,15,38,8,31)(2,53,23,46,16,39,9,32)(3,54,24,47,17,40,10,33)(4,55,25,48,18,41,11,34)(5,56,26,49,19,42,12,35)(6,29,27,50,20,43,13,36)(7,30,28,51,21,44,14,37)(57,85,64,92,71,99,78,106)(58,86,65,93,72,100,79,107)(59,87,66,94,73,101,80,108)(60,88,67,95,74,102,81,109)(61,89,68,96,75,103,82,110)(62,90,69,97,76,104,83,111)(63,91,70,98,77,105,84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,64,22,57,15,78,8,71)(2,77,23,70,16,63,9,84)(3,62,24,83,17,76,10,69)(4,75,25,68,18,61,11,82)(5,60,26,81,19,74,12,67)(6,73,27,66,20,59,13,80)(7,58,28,79,21,72,14,65)(29,94,50,87,43,108,36,101)(30,107,51,100,44,93,37,86)(31,92,52,85,45,106,38,99)(32,105,53,98,46,91,39,112)(33,90,54,111,47,104,40,97)(34,103,55,96,48,89,41,110)(35,88,56,109,49,102,42,95)>;

G:=Group( (1,52,22,45,15,38,8,31)(2,53,23,46,16,39,9,32)(3,54,24,47,17,40,10,33)(4,55,25,48,18,41,11,34)(5,56,26,49,19,42,12,35)(6,29,27,50,20,43,13,36)(7,30,28,51,21,44,14,37)(57,85,64,92,71,99,78,106)(58,86,65,93,72,100,79,107)(59,87,66,94,73,101,80,108)(60,88,67,95,74,102,81,109)(61,89,68,96,75,103,82,110)(62,90,69,97,76,104,83,111)(63,91,70,98,77,105,84,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,64,22,57,15,78,8,71)(2,77,23,70,16,63,9,84)(3,62,24,83,17,76,10,69)(4,75,25,68,18,61,11,82)(5,60,26,81,19,74,12,67)(6,73,27,66,20,59,13,80)(7,58,28,79,21,72,14,65)(29,94,50,87,43,108,36,101)(30,107,51,100,44,93,37,86)(31,92,52,85,45,106,38,99)(32,105,53,98,46,91,39,112)(33,90,54,111,47,104,40,97)(34,103,55,96,48,89,41,110)(35,88,56,109,49,102,42,95) );

G=PermutationGroup([[(1,52,22,45,15,38,8,31),(2,53,23,46,16,39,9,32),(3,54,24,47,17,40,10,33),(4,55,25,48,18,41,11,34),(5,56,26,49,19,42,12,35),(6,29,27,50,20,43,13,36),(7,30,28,51,21,44,14,37),(57,85,64,92,71,99,78,106),(58,86,65,93,72,100,79,107),(59,87,66,94,73,101,80,108),(60,88,67,95,74,102,81,109),(61,89,68,96,75,103,82,110),(62,90,69,97,76,104,83,111),(63,91,70,98,77,105,84,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,64,22,57,15,78,8,71),(2,77,23,70,16,63,9,84),(3,62,24,83,17,76,10,69),(4,75,25,68,18,61,11,82),(5,60,26,81,19,74,12,67),(6,73,27,66,20,59,13,80),(7,58,28,79,21,72,14,65),(29,94,50,87,43,108,36,101),(30,107,51,100,44,93,37,86),(31,92,52,85,45,106,38,99),(32,105,53,98,46,91,39,112),(33,90,54,111,47,104,40,97),(34,103,55,96,48,89,41,110),(35,88,56,109,49,102,42,95)]])

C56.C4 is a maximal subgroup of
C56.Q8  C8.7Dic14  C112.C4  D56.1C4  C16⋊Dic7  C28.3D8  C28.4D8  D8.Dic7  Q16.Dic7  C28.58D8  D5611C4  D564C4  D7×C8.C4  M4(2).25D14  M4(2).Dic7  D4.3D28  D4.4D28  D4.5D28  C56.23D4  C56.44D4  C56.29D4  D85Dic7  D84Dic7
C56.C4 is a maximal quotient of
C562C8  C561C8  C28.10C42

62 conjugacy classes

class 1 2A2B4A4B4C7A7B7C8A8B8C8D8E8F8G8H14A···14I28A···28L56A···56X
order1224447778888888814···1428···2856···56
size1121122222222282828282···22···22···2

62 irreducible representations

dim1111222222222
type++++-+-++-
imageC1C2C2C4D4Q8D7Dic7D14C8.C4D28Dic14C56.C4
kernelC56.C4C4.Dic7C2×C56C56C28C2×C14C2×C8C8C2×C4C7C4C22C1
# reps12141136346624

Matrix representation of C56.C4 in GL4(𝔽113) generated by

18000
04400
0010
0001
,
98000
09800
0051
00194
,
0100
98000
008533
007928
G:=sub<GL(4,GF(113))| [18,0,0,0,0,44,0,0,0,0,1,0,0,0,0,1],[98,0,0,0,0,98,0,0,0,0,5,19,0,0,1,4],[0,98,0,0,1,0,0,0,0,0,85,79,0,0,33,28] >;

C56.C4 in GAP, Magma, Sage, TeX

C_{56}.C_4
% in TeX

G:=Group("C56.C4");
// GroupNames label

G:=SmallGroup(224,25);
// by ID

G=gap.SmallGroup(224,25);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,55,86,579,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^8=1,b^14=a^4,c^2=a^4*b^7,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^13>;
// generators/relations

Export

Subgroup lattice of C56.C4 in TeX

׿
×
𝔽