Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic7

Direct product G=N×Q with N=C4 and Q=C2×Dic7
dρLabelID
C2×C4×Dic7224C2xC4xDic7224,117

Semidirect products G=N:Q with N=C4 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic7) = D4×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C4112C4:1(C2xDic7)224,129
C42(C2×Dic7) = C2×C4⋊Dic7φ: C2×Dic7/C2×C14C2 ⊆ Aut C4224C4:2(C2xDic7)224,120

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic7) = D4⋊Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C4112C4.1(C2xDic7)224,38
C4.2(C2×Dic7) = Q8⋊Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C4224C4.2(C2xDic7)224,41
C4.3(C2×Dic7) = D42Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C4564C4.3(C2xDic7)224,43
C4.4(C2×Dic7) = Q8×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C4224C4.4(C2xDic7)224,140
C4.5(C2×Dic7) = Q8.Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C41124C4.5(C2xDic7)224,143
C4.6(C2×Dic7) = C8⋊Dic7φ: C2×Dic7/C2×C14C2 ⊆ Aut C4224C4.6(C2xDic7)224,23
C4.7(C2×Dic7) = C561C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C4224C4.7(C2xDic7)224,24
C4.8(C2×Dic7) = C56.C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C41122C4.8(C2xDic7)224,25
C4.9(C2×Dic7) = C2×C4.Dic7φ: C2×Dic7/C2×C14C2 ⊆ Aut C4112C4.9(C2xDic7)224,116
C4.10(C2×Dic7) = C2×C7⋊C16central extension (φ=1)224C4.10(C2xDic7)224,17
C4.11(C2×Dic7) = C28.C8central extension (φ=1)1122C4.11(C2xDic7)224,18
C4.12(C2×Dic7) = C8×Dic7central extension (φ=1)224C4.12(C2xDic7)224,19
C4.13(C2×Dic7) = C56⋊C4central extension (φ=1)224C4.13(C2xDic7)224,21
C4.14(C2×Dic7) = C22×C7⋊C8central extension (φ=1)224C4.14(C2xDic7)224,115
C4.15(C2×Dic7) = C23.21D14central extension (φ=1)112C4.15(C2xDic7)224,121

׿
×
𝔽