metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C28.7D4, D4⋊1Dic7, C14.12D8, C14.6SD16, (C7×D4)⋊1C4, C28.7(C2×C4), (C2×D4).1D7, C7⋊3(D4⋊C4), C4⋊Dic7⋊10C2, C2.3(D4⋊D7), (D4×C14).1C2, (C2×C4).39D14, (C2×C14).33D4, C4.1(C2×Dic7), C4.12(C7⋊D4), C2.3(D4.D7), (C2×C28).16C22, C2.3(C23.D7), C14.13(C22⋊C4), C22.17(C7⋊D4), (C2×C7⋊C8)⋊2C2, SmallGroup(224,38)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊Dic7
G = < a,b,c,d | a4=b2=c14=1, d2=c7, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >
(1 50 35 107)(2 51 36 108)(3 52 37 109)(4 53 38 110)(5 54 39 111)(6 55 40 112)(7 56 41 99)(8 43 42 100)(9 44 29 101)(10 45 30 102)(11 46 31 103)(12 47 32 104)(13 48 33 105)(14 49 34 106)(15 59 92 74)(16 60 93 75)(17 61 94 76)(18 62 95 77)(19 63 96 78)(20 64 97 79)(21 65 98 80)(22 66 85 81)(23 67 86 82)(24 68 87 83)(25 69 88 84)(26 70 89 71)(27 57 90 72)(28 58 91 73)
(1 107)(2 108)(3 109)(4 110)(5 111)(6 112)(7 99)(8 100)(9 101)(10 102)(11 103)(12 104)(13 105)(14 106)(15 92)(16 93)(17 94)(18 95)(19 96)(20 97)(21 98)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 91)(29 44)(30 45)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 85 8 92)(2 98 9 91)(3 97 10 90)(4 96 11 89)(5 95 12 88)(6 94 13 87)(7 93 14 86)(15 35 22 42)(16 34 23 41)(17 33 24 40)(18 32 25 39)(19 31 26 38)(20 30 27 37)(21 29 28 36)(43 59 50 66)(44 58 51 65)(45 57 52 64)(46 70 53 63)(47 69 54 62)(48 68 55 61)(49 67 56 60)(71 110 78 103)(72 109 79 102)(73 108 80 101)(74 107 81 100)(75 106 82 99)(76 105 83 112)(77 104 84 111)
G:=sub<Sym(112)| (1,50,35,107)(2,51,36,108)(3,52,37,109)(4,53,38,110)(5,54,39,111)(6,55,40,112)(7,56,41,99)(8,43,42,100)(9,44,29,101)(10,45,30,102)(11,46,31,103)(12,47,32,104)(13,48,33,105)(14,49,34,106)(15,59,92,74)(16,60,93,75)(17,61,94,76)(18,62,95,77)(19,63,96,78)(20,64,97,79)(21,65,98,80)(22,66,85,81)(23,67,86,82)(24,68,87,83)(25,69,88,84)(26,70,89,71)(27,57,90,72)(28,58,91,73), (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,98)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,8,92)(2,98,9,91)(3,97,10,90)(4,96,11,89)(5,95,12,88)(6,94,13,87)(7,93,14,86)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36)(43,59,50,66)(44,58,51,65)(45,57,52,64)(46,70,53,63)(47,69,54,62)(48,68,55,61)(49,67,56,60)(71,110,78,103)(72,109,79,102)(73,108,80,101)(74,107,81,100)(75,106,82,99)(76,105,83,112)(77,104,84,111)>;
G:=Group( (1,50,35,107)(2,51,36,108)(3,52,37,109)(4,53,38,110)(5,54,39,111)(6,55,40,112)(7,56,41,99)(8,43,42,100)(9,44,29,101)(10,45,30,102)(11,46,31,103)(12,47,32,104)(13,48,33,105)(14,49,34,106)(15,59,92,74)(16,60,93,75)(17,61,94,76)(18,62,95,77)(19,63,96,78)(20,64,97,79)(21,65,98,80)(22,66,85,81)(23,67,86,82)(24,68,87,83)(25,69,88,84)(26,70,89,71)(27,57,90,72)(28,58,91,73), (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,98)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,8,92)(2,98,9,91)(3,97,10,90)(4,96,11,89)(5,95,12,88)(6,94,13,87)(7,93,14,86)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36)(43,59,50,66)(44,58,51,65)(45,57,52,64)(46,70,53,63)(47,69,54,62)(48,68,55,61)(49,67,56,60)(71,110,78,103)(72,109,79,102)(73,108,80,101)(74,107,81,100)(75,106,82,99)(76,105,83,112)(77,104,84,111) );
G=PermutationGroup([[(1,50,35,107),(2,51,36,108),(3,52,37,109),(4,53,38,110),(5,54,39,111),(6,55,40,112),(7,56,41,99),(8,43,42,100),(9,44,29,101),(10,45,30,102),(11,46,31,103),(12,47,32,104),(13,48,33,105),(14,49,34,106),(15,59,92,74),(16,60,93,75),(17,61,94,76),(18,62,95,77),(19,63,96,78),(20,64,97,79),(21,65,98,80),(22,66,85,81),(23,67,86,82),(24,68,87,83),(25,69,88,84),(26,70,89,71),(27,57,90,72),(28,58,91,73)], [(1,107),(2,108),(3,109),(4,110),(5,111),(6,112),(7,99),(8,100),(9,101),(10,102),(11,103),(12,104),(13,105),(14,106),(15,92),(16,93),(17,94),(18,95),(19,96),(20,97),(21,98),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,91),(29,44),(30,45),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,85,8,92),(2,98,9,91),(3,97,10,90),(4,96,11,89),(5,95,12,88),(6,94,13,87),(7,93,14,86),(15,35,22,42),(16,34,23,41),(17,33,24,40),(18,32,25,39),(19,31,26,38),(20,30,27,37),(21,29,28,36),(43,59,50,66),(44,58,51,65),(45,57,52,64),(46,70,53,63),(47,69,54,62),(48,68,55,61),(49,67,56,60),(71,110,78,103),(72,109,79,102),(73,108,80,101),(74,107,81,100),(75,106,82,99),(76,105,83,112),(77,104,84,111)]])
D4⋊Dic7 is a maximal subgroup of
Dic7.D8 Dic7.SD16 D4⋊Dic14 D4.Dic14 C4⋊C4.D14 C28⋊Q8⋊C2 D4.2Dic14 (C8×Dic7)⋊C2 D7×D4⋊C4 (D4×D7)⋊C4 D4⋊(C4×D7) D4⋊2D7⋊C4 D14.D8 D14.SD16 C8⋊Dic7⋊C2 C56⋊1C4⋊C2 C28.50D8 C28.38SD16 D4.3Dic14 C4×D4⋊D7 C42.48D14 C4×D4.D7 C42.51D14 (C2×C14).D8 C4⋊D4.D7 (C2×D4).D14 C7⋊C8⋊22D4 C4⋊D4⋊D7 C7⋊C8⋊23D4 C7⋊C8⋊5D4 C42.61D14 C42.62D14 C42.213D14 D28.23D4 C28.16D8 C42.72D14 C28⋊2D8 Dic14⋊9D4 D8×Dic7 Dic7⋊D8 D8⋊Dic7 (C2×D8).D7 D28⋊D4 C56⋊6D4 Dic14⋊D4 C56⋊12D4 SD16×Dic7 Dic7⋊5SD16 SD16⋊Dic7 (C7×Q8).D4 D14⋊6SD16 C56⋊14D4 Dic14.16D4 C56⋊8D4 (D4×C14)⋊6C4 (C2×C14)⋊8D8 (C7×D4).31D4 C4○D4⋊Dic7 C28.(C2×D4) (C7×D4)⋊14D4 (C7×D4).32D4
D4⋊Dic7 is a maximal quotient of
C28.C42 C28.57D8 (D4×C14)⋊C4 C28.9D8 C28.10D8 C14.SD32 D8.Dic7 C14.Q32 Q16.Dic7 D8⋊2Dic7 C28.58D8
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 14J | ··· | 14U | 28A | ··· | 28F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 28 | 28 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | D7 | D8 | SD16 | D14 | Dic7 | C7⋊D4 | C7⋊D4 | D4⋊D7 | D4.D7 |
kernel | D4⋊Dic7 | C2×C7⋊C8 | C4⋊Dic7 | D4×C14 | C7×D4 | C28 | C2×C14 | C2×D4 | C14 | C14 | C2×C4 | D4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 3 | 2 | 2 | 3 | 6 | 6 | 6 | 3 | 3 |
Matrix representation of D4⋊Dic7 ►in GL6(𝔽113)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 43 | 42 |
0 | 0 | 0 | 0 | 112 | 70 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 5 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 43 | 42 |
0 | 0 | 0 | 0 | 69 | 70 |
16 | 0 | 0 | 0 | 0 | 0 |
2 | 106 | 0 | 0 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
19 | 64 | 0 | 0 | 0 | 0 |
65 | 94 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 98 | 0 | 0 |
0 | 0 | 107 | 94 | 0 | 0 |
0 | 0 | 0 | 0 | 54 | 54 |
0 | 0 | 0 | 0 | 36 | 59 |
G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,43,112,0,0,0,0,42,70],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,5,0,0,0,0,0,1,0,0,0,0,0,0,43,69,0,0,0,0,42,70],[16,2,0,0,0,0,0,106,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[19,65,0,0,0,0,64,94,0,0,0,0,0,0,19,107,0,0,0,0,98,94,0,0,0,0,0,0,54,36,0,0,0,0,54,59] >;
D4⋊Dic7 in GAP, Magma, Sage, TeX
D_4\rtimes {\rm Dic}_7
% in TeX
G:=Group("D4:Dic7");
// GroupNames label
G:=SmallGroup(224,38);
// by ID
G=gap.SmallGroup(224,38);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,579,297,69,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^14=1,d^2=c^7,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export