Copied to
clipboard

G = D4⋊Dic7order 224 = 25·7

1st semidirect product of D4 and Dic7 acting via Dic7/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.7D4, D41Dic7, C14.12D8, C14.6SD16, (C7×D4)⋊1C4, C28.7(C2×C4), (C2×D4).1D7, C73(D4⋊C4), C4⋊Dic710C2, C2.3(D4⋊D7), (D4×C14).1C2, (C2×C4).39D14, (C2×C14).33D4, C4.1(C2×Dic7), C4.12(C7⋊D4), C2.3(D4.D7), (C2×C28).16C22, C2.3(C23.D7), C14.13(C22⋊C4), C22.17(C7⋊D4), (C2×C7⋊C8)⋊2C2, SmallGroup(224,38)

Series: Derived Chief Lower central Upper central

C1C28 — D4⋊Dic7
C1C7C14C2×C14C2×C28C4⋊Dic7 — D4⋊Dic7
C7C14C28 — D4⋊Dic7
C1C22C2×C4C2×D4

Generators and relations for D4⋊Dic7
 G = < a,b,c,d | a4=b2=c14=1, d2=c7, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=c-1 >

4C2
4C2
2C22
2C22
4C22
4C22
28C4
4C14
4C14
2D4
2C23
14C2×C4
14C8
2C2×C14
2C2×C14
4C2×C14
4Dic7
4C2×C14
7C4⋊C4
7C2×C8
2C7⋊C8
2C7×D4
2C2×Dic7
2C22×C14
7D4⋊C4

Smallest permutation representation of D4⋊Dic7
On 112 points
Generators in S112
(1 50 35 107)(2 51 36 108)(3 52 37 109)(4 53 38 110)(5 54 39 111)(6 55 40 112)(7 56 41 99)(8 43 42 100)(9 44 29 101)(10 45 30 102)(11 46 31 103)(12 47 32 104)(13 48 33 105)(14 49 34 106)(15 59 92 74)(16 60 93 75)(17 61 94 76)(18 62 95 77)(19 63 96 78)(20 64 97 79)(21 65 98 80)(22 66 85 81)(23 67 86 82)(24 68 87 83)(25 69 88 84)(26 70 89 71)(27 57 90 72)(28 58 91 73)
(1 107)(2 108)(3 109)(4 110)(5 111)(6 112)(7 99)(8 100)(9 101)(10 102)(11 103)(12 104)(13 105)(14 106)(15 92)(16 93)(17 94)(18 95)(19 96)(20 97)(21 98)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 91)(29 44)(30 45)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 85 8 92)(2 98 9 91)(3 97 10 90)(4 96 11 89)(5 95 12 88)(6 94 13 87)(7 93 14 86)(15 35 22 42)(16 34 23 41)(17 33 24 40)(18 32 25 39)(19 31 26 38)(20 30 27 37)(21 29 28 36)(43 59 50 66)(44 58 51 65)(45 57 52 64)(46 70 53 63)(47 69 54 62)(48 68 55 61)(49 67 56 60)(71 110 78 103)(72 109 79 102)(73 108 80 101)(74 107 81 100)(75 106 82 99)(76 105 83 112)(77 104 84 111)

G:=sub<Sym(112)| (1,50,35,107)(2,51,36,108)(3,52,37,109)(4,53,38,110)(5,54,39,111)(6,55,40,112)(7,56,41,99)(8,43,42,100)(9,44,29,101)(10,45,30,102)(11,46,31,103)(12,47,32,104)(13,48,33,105)(14,49,34,106)(15,59,92,74)(16,60,93,75)(17,61,94,76)(18,62,95,77)(19,63,96,78)(20,64,97,79)(21,65,98,80)(22,66,85,81)(23,67,86,82)(24,68,87,83)(25,69,88,84)(26,70,89,71)(27,57,90,72)(28,58,91,73), (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,98)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,8,92)(2,98,9,91)(3,97,10,90)(4,96,11,89)(5,95,12,88)(6,94,13,87)(7,93,14,86)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36)(43,59,50,66)(44,58,51,65)(45,57,52,64)(46,70,53,63)(47,69,54,62)(48,68,55,61)(49,67,56,60)(71,110,78,103)(72,109,79,102)(73,108,80,101)(74,107,81,100)(75,106,82,99)(76,105,83,112)(77,104,84,111)>;

G:=Group( (1,50,35,107)(2,51,36,108)(3,52,37,109)(4,53,38,110)(5,54,39,111)(6,55,40,112)(7,56,41,99)(8,43,42,100)(9,44,29,101)(10,45,30,102)(11,46,31,103)(12,47,32,104)(13,48,33,105)(14,49,34,106)(15,59,92,74)(16,60,93,75)(17,61,94,76)(18,62,95,77)(19,63,96,78)(20,64,97,79)(21,65,98,80)(22,66,85,81)(23,67,86,82)(24,68,87,83)(25,69,88,84)(26,70,89,71)(27,57,90,72)(28,58,91,73), (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,99)(8,100)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,92)(16,93)(17,94)(18,95)(19,96)(20,97)(21,98)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,85,8,92)(2,98,9,91)(3,97,10,90)(4,96,11,89)(5,95,12,88)(6,94,13,87)(7,93,14,86)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36)(43,59,50,66)(44,58,51,65)(45,57,52,64)(46,70,53,63)(47,69,54,62)(48,68,55,61)(49,67,56,60)(71,110,78,103)(72,109,79,102)(73,108,80,101)(74,107,81,100)(75,106,82,99)(76,105,83,112)(77,104,84,111) );

G=PermutationGroup([[(1,50,35,107),(2,51,36,108),(3,52,37,109),(4,53,38,110),(5,54,39,111),(6,55,40,112),(7,56,41,99),(8,43,42,100),(9,44,29,101),(10,45,30,102),(11,46,31,103),(12,47,32,104),(13,48,33,105),(14,49,34,106),(15,59,92,74),(16,60,93,75),(17,61,94,76),(18,62,95,77),(19,63,96,78),(20,64,97,79),(21,65,98,80),(22,66,85,81),(23,67,86,82),(24,68,87,83),(25,69,88,84),(26,70,89,71),(27,57,90,72),(28,58,91,73)], [(1,107),(2,108),(3,109),(4,110),(5,111),(6,112),(7,99),(8,100),(9,101),(10,102),(11,103),(12,104),(13,105),(14,106),(15,92),(16,93),(17,94),(18,95),(19,96),(20,97),(21,98),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,91),(29,44),(30,45),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,85,8,92),(2,98,9,91),(3,97,10,90),(4,96,11,89),(5,95,12,88),(6,94,13,87),(7,93,14,86),(15,35,22,42),(16,34,23,41),(17,33,24,40),(18,32,25,39),(19,31,26,38),(20,30,27,37),(21,29,28,36),(43,59,50,66),(44,58,51,65),(45,57,52,64),(46,70,53,63),(47,69,54,62),(48,68,55,61),(49,67,56,60),(71,110,78,103),(72,109,79,102),(73,108,80,101),(74,107,81,100),(75,106,82,99),(76,105,83,112),(77,104,84,111)]])

D4⋊Dic7 is a maximal subgroup of
Dic7.D8  Dic7.SD16  D4⋊Dic14  D4.Dic14  C4⋊C4.D14  C28⋊Q8⋊C2  D4.2Dic14  (C8×Dic7)⋊C2  D7×D4⋊C4  (D4×D7)⋊C4  D4⋊(C4×D7)  D42D7⋊C4  D14.D8  D14.SD16  C8⋊Dic7⋊C2  C561C4⋊C2  C28.50D8  C28.38SD16  D4.3Dic14  C4×D4⋊D7  C42.48D14  C4×D4.D7  C42.51D14  (C2×C14).D8  C4⋊D4.D7  (C2×D4).D14  C7⋊C822D4  C4⋊D4⋊D7  C7⋊C823D4  C7⋊C85D4  C42.61D14  C42.62D14  C42.213D14  D28.23D4  C28.16D8  C42.72D14  C282D8  Dic149D4  D8×Dic7  Dic7⋊D8  D8⋊Dic7  (C2×D8).D7  D28⋊D4  C566D4  Dic14⋊D4  C5612D4  SD16×Dic7  Dic75SD16  SD16⋊Dic7  (C7×Q8).D4  D146SD16  C5614D4  Dic14.16D4  C568D4  (D4×C14)⋊6C4  (C2×C14)⋊8D8  (C7×D4).31D4  C4○D4⋊Dic7  C28.(C2×D4)  (C7×D4)⋊14D4  (C7×D4).32D4
D4⋊Dic7 is a maximal quotient of
C28.C42  C28.57D8  (D4×C14)⋊C4  C28.9D8  C28.10D8  C14.SD32  D8.Dic7  C14.Q32  Q16.Dic7  D82Dic7  C28.58D8

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A7B7C8A8B8C8D14A···14I14J···14U28A···28F
order1222224444777888814···1414···1428···28
size111144222828222141414142···24···44···4

44 irreducible representations

dim1111122222222244
type+++++++++-+-
imageC1C2C2C2C4D4D4D7D8SD16D14Dic7C7⋊D4C7⋊D4D4⋊D7D4.D7
kernelD4⋊Dic7C2×C7⋊C8C4⋊Dic7D4×C14C7×D4C28C2×C14C2×D4C14C14C2×C4D4C4C22C2C2
# reps1111411322366633

Matrix representation of D4⋊Dic7 in GL6(𝔽113)

100000
010000
00112000
00011200
00004342
000011270
,
100000
010000
00112000
005100
00004342
00006970
,
1600000
21060000
00112000
00011200
000010
000001
,
19640000
65940000
00199800
001079400
00005454
00003659

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,43,112,0,0,0,0,42,70],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,5,0,0,0,0,0,1,0,0,0,0,0,0,43,69,0,0,0,0,42,70],[16,2,0,0,0,0,0,106,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[19,65,0,0,0,0,64,94,0,0,0,0,0,0,19,107,0,0,0,0,98,94,0,0,0,0,0,0,54,36,0,0,0,0,54,59] >;

D4⋊Dic7 in GAP, Magma, Sage, TeX

D_4\rtimes {\rm Dic}_7
% in TeX

G:=Group("D4:Dic7");
// GroupNames label

G:=SmallGroup(224,38);
// by ID

G=gap.SmallGroup(224,38);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,579,297,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^14=1,d^2=c^7,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D4⋊Dic7 in TeX

׿
×
𝔽