Copied to
clipboard

G = C2×C4.Dic7order 224 = 25·7

Direct product of C2 and C4.Dic7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4.Dic7, C142M4(2), C28.41C23, C23.3Dic7, C7⋊C812C22, (C2×C28).9C4, C73(C2×M4(2)), C28.36(C2×C4), C4.9(C2×Dic7), (C2×C4).6Dic7, (C22×C4).4D7, (C2×C4).100D14, (C22×C14).7C4, (C22×C28).9C2, C4.41(C22×D7), C14.21(C22×C4), C2.3(C22×Dic7), (C2×C28).100C22, C22.12(C2×Dic7), (C2×C7⋊C8)⋊12C2, (C2×C14).32(C2×C4), SmallGroup(224,116)

Series: Derived Chief Lower central Upper central

C1C14 — C2×C4.Dic7
C1C7C14C28C7⋊C8C2×C7⋊C8 — C2×C4.Dic7
C7C14 — C2×C4.Dic7
C1C2×C4C22×C4

Generators and relations for C2×C4.Dic7
 G = < a,b,c,d | a2=b4=1, c14=b2, d2=b2c7, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c13 >

Subgroups: 142 in 68 conjugacy classes, 49 normal (19 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C14, C2×C8, M4(2), C22×C4, C28, C28, C2×C14, C2×C14, C2×C14, C2×M4(2), C7⋊C8, C2×C28, C2×C28, C22×C14, C2×C7⋊C8, C4.Dic7, C22×C28, C2×C4.Dic7
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, M4(2), C22×C4, Dic7, D14, C2×M4(2), C2×Dic7, C22×D7, C4.Dic7, C22×Dic7, C2×C4.Dic7

Smallest permutation representation of C2×C4.Dic7
On 112 points
Generators in S112
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(57 111)(58 112)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(79 105)(80 106)(81 107)(82 108)(83 109)(84 110)
(1 22 15 8)(2 23 16 9)(3 24 17 10)(4 25 18 11)(5 26 19 12)(6 27 20 13)(7 28 21 14)(29 50 43 36)(30 51 44 37)(31 52 45 38)(32 53 46 39)(33 54 47 40)(34 55 48 41)(35 56 49 42)(57 64 71 78)(58 65 72 79)(59 66 73 80)(60 67 74 81)(61 68 75 82)(62 69 76 83)(63 70 77 84)(85 92 99 106)(86 93 100 107)(87 94 101 108)(88 95 102 109)(89 96 103 110)(90 97 104 111)(91 98 105 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 68 22 61 15 82 8 75)(2 81 23 74 16 67 9 60)(3 66 24 59 17 80 10 73)(4 79 25 72 18 65 11 58)(5 64 26 57 19 78 12 71)(6 77 27 70 20 63 13 84)(7 62 28 83 21 76 14 69)(29 101 50 94 43 87 36 108)(30 86 51 107 44 100 37 93)(31 99 52 92 45 85 38 106)(32 112 53 105 46 98 39 91)(33 97 54 90 47 111 40 104)(34 110 55 103 48 96 41 89)(35 95 56 88 49 109 42 102)

G:=sub<Sym(112)| (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,111)(58,112)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,109)(84,110), (1,22,15,8)(2,23,16,9)(3,24,17,10)(4,25,18,11)(5,26,19,12)(6,27,20,13)(7,28,21,14)(29,50,43,36)(30,51,44,37)(31,52,45,38)(32,53,46,39)(33,54,47,40)(34,55,48,41)(35,56,49,42)(57,64,71,78)(58,65,72,79)(59,66,73,80)(60,67,74,81)(61,68,75,82)(62,69,76,83)(63,70,77,84)(85,92,99,106)(86,93,100,107)(87,94,101,108)(88,95,102,109)(89,96,103,110)(90,97,104,111)(91,98,105,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,68,22,61,15,82,8,75)(2,81,23,74,16,67,9,60)(3,66,24,59,17,80,10,73)(4,79,25,72,18,65,11,58)(5,64,26,57,19,78,12,71)(6,77,27,70,20,63,13,84)(7,62,28,83,21,76,14,69)(29,101,50,94,43,87,36,108)(30,86,51,107,44,100,37,93)(31,99,52,92,45,85,38,106)(32,112,53,105,46,98,39,91)(33,97,54,90,47,111,40,104)(34,110,55,103,48,96,41,89)(35,95,56,88,49,109,42,102)>;

G:=Group( (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,111)(58,112)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,109)(84,110), (1,22,15,8)(2,23,16,9)(3,24,17,10)(4,25,18,11)(5,26,19,12)(6,27,20,13)(7,28,21,14)(29,50,43,36)(30,51,44,37)(31,52,45,38)(32,53,46,39)(33,54,47,40)(34,55,48,41)(35,56,49,42)(57,64,71,78)(58,65,72,79)(59,66,73,80)(60,67,74,81)(61,68,75,82)(62,69,76,83)(63,70,77,84)(85,92,99,106)(86,93,100,107)(87,94,101,108)(88,95,102,109)(89,96,103,110)(90,97,104,111)(91,98,105,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,68,22,61,15,82,8,75)(2,81,23,74,16,67,9,60)(3,66,24,59,17,80,10,73)(4,79,25,72,18,65,11,58)(5,64,26,57,19,78,12,71)(6,77,27,70,20,63,13,84)(7,62,28,83,21,76,14,69)(29,101,50,94,43,87,36,108)(30,86,51,107,44,100,37,93)(31,99,52,92,45,85,38,106)(32,112,53,105,46,98,39,91)(33,97,54,90,47,111,40,104)(34,110,55,103,48,96,41,89)(35,95,56,88,49,109,42,102) );

G=PermutationGroup([[(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(57,111),(58,112),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(79,105),(80,106),(81,107),(82,108),(83,109),(84,110)], [(1,22,15,8),(2,23,16,9),(3,24,17,10),(4,25,18,11),(5,26,19,12),(6,27,20,13),(7,28,21,14),(29,50,43,36),(30,51,44,37),(31,52,45,38),(32,53,46,39),(33,54,47,40),(34,55,48,41),(35,56,49,42),(57,64,71,78),(58,65,72,79),(59,66,73,80),(60,67,74,81),(61,68,75,82),(62,69,76,83),(63,70,77,84),(85,92,99,106),(86,93,100,107),(87,94,101,108),(88,95,102,109),(89,96,103,110),(90,97,104,111),(91,98,105,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,68,22,61,15,82,8,75),(2,81,23,74,16,67,9,60),(3,66,24,59,17,80,10,73),(4,79,25,72,18,65,11,58),(5,64,26,57,19,78,12,71),(6,77,27,70,20,63,13,84),(7,62,28,83,21,76,14,69),(29,101,50,94,43,87,36,108),(30,86,51,107,44,100,37,93),(31,99,52,92,45,85,38,106),(32,112,53,105,46,98,39,91),(33,97,54,90,47,111,40,104),(34,110,55,103,48,96,41,89),(35,95,56,88,49,109,42,102)]])

C2×C4.Dic7 is a maximal subgroup of
C28.8C42  C28.(C4⋊C4)  C42⋊Dic7  C28.2C42  (C2×C28).Q8  C28.10C42  M4(2)⋊Dic7  (C2×C56)⋊C4  C28.4C42  M4(2)⋊4Dic7  C28.21C42  D142M4(2)  Dic7⋊M4(2)  C287M4(2)  C4.Dic7⋊C4  C4○D28⋊C4  C28.(C2×Q8)  C28.5C42  C42.43D14  C4⋊C436D14  (C2×C4).47D28  C424D14  C42.47D14  C283M4(2)  C4⋊D4⋊D7  C7⋊C85D4  C7⋊C86D4  C7⋊C8.6D4  C28.12C42  Dic7⋊C8⋊C2  (C22×C8)⋊D7  M4(2)×Dic7  Dic74M4(2)  C23.Dic14  M4(2).Dic7  D146M4(2)  M4(2).31D14  C24.4Dic7  (D4×C14)⋊6C4  (Q8×C14)⋊6C4  C4○D4⋊Dic7  (D4×C14).11C4  (D4×C14)⋊9C4  (D4×C14).16C4  C2×D7×M4(2)  C28.70C24  C28.76C24  C28.C24
C2×C4.Dic7 is a maximal quotient of
C287M4(2)  C42.6Dic7  C42.7Dic7  C42.47D14  C283M4(2)  C42.210D14  C24.4Dic7

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A7B7C8A···8H14A···14U28A···28X
order1222224444447778···814···1428···28
size11112211112222214···142···22···2

68 irreducible representations

dim111111222222
type+++++-+-
imageC1C2C2C2C4C4D7M4(2)Dic7D14Dic7C4.Dic7
kernelC2×C4.Dic7C2×C7⋊C8C4.Dic7C22×C28C2×C28C22×C14C22×C4C14C2×C4C2×C4C23C2
# reps1241623499324

Matrix representation of C2×C4.Dic7 in GL3(𝔽113) generated by

11200
01120
00112
,
11200
0150
0098
,
100
0810
0053
,
100
001
0150
G:=sub<GL(3,GF(113))| [112,0,0,0,112,0,0,0,112],[112,0,0,0,15,0,0,0,98],[1,0,0,0,81,0,0,0,53],[1,0,0,0,0,15,0,1,0] >;

C2×C4.Dic7 in GAP, Magma, Sage, TeX

C_2\times C_4.{\rm Dic}_7
% in TeX

G:=Group("C2xC4.Dic7");
// GroupNames label

G:=SmallGroup(224,116);
// by ID

G=gap.SmallGroup(224,116);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,48,362,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=1,c^14=b^2,d^2=b^2*c^7,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽