Extensions 1→N→G→Q→1 with N=C6 and Q=C4×D5

Direct product G=N×Q with N=C6 and Q=C4×D5
dρLabelID
D5×C2×C12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C6 and Q=C4×D5
extensionφ:Q→Aut NdρLabelID
C61(C4×D5) = C2×D30.C2φ: C4×D5/Dic5C2 ⊆ Aut C6120C6:1(C4xD5)240,144
C62(C4×D5) = C2×C4×D15φ: C4×D5/C20C2 ⊆ Aut C6120C6:2(C4xD5)240,176
C63(C4×D5) = C2×D5×Dic3φ: C4×D5/D10C2 ⊆ Aut C6120C6:3(C4xD5)240,139

Non-split extensions G=N.Q with N=C6 and Q=C4×D5
extensionφ:Q→Aut NdρLabelID
C6.1(C4×D5) = D152C8φ: C4×D5/Dic5C2 ⊆ Aut C61204C6.1(C4xD5)240,9
C6.2(C4×D5) = D30.5C4φ: C4×D5/Dic5C2 ⊆ Aut C61204C6.2(C4xD5)240,12
C6.3(C4×D5) = D304C4φ: C4×D5/Dic5C2 ⊆ Aut C6120C6.3(C4xD5)240,28
C6.4(C4×D5) = Dic155C4φ: C4×D5/Dic5C2 ⊆ Aut C6240C6.4(C4xD5)240,30
C6.5(C4×D5) = C8×D15φ: C4×D5/C20C2 ⊆ Aut C61202C6.5(C4xD5)240,65
C6.6(C4×D5) = C40⋊S3φ: C4×D5/C20C2 ⊆ Aut C61202C6.6(C4xD5)240,66
C6.7(C4×D5) = C4×Dic15φ: C4×D5/C20C2 ⊆ Aut C6240C6.7(C4xD5)240,72
C6.8(C4×D5) = C30.4Q8φ: C4×D5/C20C2 ⊆ Aut C6240C6.8(C4xD5)240,73
C6.9(C4×D5) = D303C4φ: C4×D5/C20C2 ⊆ Aut C6120C6.9(C4xD5)240,75
C6.10(C4×D5) = D5×C3⋊C8φ: C4×D5/D10C2 ⊆ Aut C61204C6.10(C4xD5)240,7
C6.11(C4×D5) = C20.32D6φ: C4×D5/D10C2 ⊆ Aut C61204C6.11(C4xD5)240,10
C6.12(C4×D5) = Dic3×Dic5φ: C4×D5/D10C2 ⊆ Aut C6240C6.12(C4xD5)240,25
C6.13(C4×D5) = D10⋊Dic3φ: C4×D5/D10C2 ⊆ Aut C6120C6.13(C4xD5)240,26
C6.14(C4×D5) = C30.Q8φ: C4×D5/D10C2 ⊆ Aut C6240C6.14(C4xD5)240,29
C6.15(C4×D5) = D5×C24central extension (φ=1)1202C6.15(C4xD5)240,33
C6.16(C4×D5) = C3×C8⋊D5central extension (φ=1)1202C6.16(C4xD5)240,34
C6.17(C4×D5) = C12×Dic5central extension (φ=1)240C6.17(C4xD5)240,40
C6.18(C4×D5) = C3×C10.D4central extension (φ=1)240C6.18(C4xD5)240,41
C6.19(C4×D5) = C3×D10⋊C4central extension (φ=1)120C6.19(C4xD5)240,43

׿
×
𝔽