extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C4×S3) = Dic3×F5 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 60 | 8- | C10.1(C4xS3) | 240,95 |
C10.2(C4×S3) = D6⋊F5 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 60 | 8+ | C10.2(C4xS3) | 240,96 |
C10.3(C4×S3) = Dic3⋊F5 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 60 | 8- | C10.3(C4xS3) | 240,97 |
C10.4(C4×S3) = S3×C5⋊C8 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 120 | 8- | C10.4(C4xS3) | 240,98 |
C10.5(C4×S3) = D15⋊C8 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 120 | 8+ | C10.5(C4xS3) | 240,99 |
C10.6(C4×S3) = D6.F5 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 120 | 8- | C10.6(C4xS3) | 240,100 |
C10.7(C4×S3) = Dic3.F5 | φ: C4×S3/S3 → C4 ⊆ Aut C10 | 120 | 8+ | C10.7(C4xS3) | 240,101 |
C10.8(C4×S3) = D15⋊2C8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C10 | 120 | 4 | C10.8(C4xS3) | 240,9 |
C10.9(C4×S3) = D30.5C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C10 | 120 | 4 | C10.9(C4xS3) | 240,12 |
C10.10(C4×S3) = D30⋊4C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C10 | 120 | | C10.10(C4xS3) | 240,28 |
C10.11(C4×S3) = Dic15⋊5C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C10 | 240 | | C10.11(C4xS3) | 240,30 |
C10.12(C4×S3) = C8×D15 | φ: C4×S3/C12 → C2 ⊆ Aut C10 | 120 | 2 | C10.12(C4xS3) | 240,65 |
C10.13(C4×S3) = C40⋊S3 | φ: C4×S3/C12 → C2 ⊆ Aut C10 | 120 | 2 | C10.13(C4xS3) | 240,66 |
C10.14(C4×S3) = C4×Dic15 | φ: C4×S3/C12 → C2 ⊆ Aut C10 | 240 | | C10.14(C4xS3) | 240,72 |
C10.15(C4×S3) = C30.4Q8 | φ: C4×S3/C12 → C2 ⊆ Aut C10 | 240 | | C10.15(C4xS3) | 240,73 |
C10.16(C4×S3) = D30⋊3C4 | φ: C4×S3/C12 → C2 ⊆ Aut C10 | 120 | | C10.16(C4xS3) | 240,75 |
C10.17(C4×S3) = S3×C5⋊2C8 | φ: C4×S3/D6 → C2 ⊆ Aut C10 | 120 | 4 | C10.17(C4xS3) | 240,8 |
C10.18(C4×S3) = D6.Dic5 | φ: C4×S3/D6 → C2 ⊆ Aut C10 | 120 | 4 | C10.18(C4xS3) | 240,11 |
C10.19(C4×S3) = Dic3×Dic5 | φ: C4×S3/D6 → C2 ⊆ Aut C10 | 240 | | C10.19(C4xS3) | 240,25 |
C10.20(C4×S3) = D6⋊Dic5 | φ: C4×S3/D6 → C2 ⊆ Aut C10 | 120 | | C10.20(C4xS3) | 240,27 |
C10.21(C4×S3) = C6.Dic10 | φ: C4×S3/D6 → C2 ⊆ Aut C10 | 240 | | C10.21(C4xS3) | 240,31 |
C10.22(C4×S3) = S3×C40 | central extension (φ=1) | 120 | 2 | C10.22(C4xS3) | 240,49 |
C10.23(C4×S3) = C5×C8⋊S3 | central extension (φ=1) | 120 | 2 | C10.23(C4xS3) | 240,50 |
C10.24(C4×S3) = Dic3×C20 | central extension (φ=1) | 240 | | C10.24(C4xS3) | 240,56 |
C10.25(C4×S3) = C5×Dic3⋊C4 | central extension (φ=1) | 240 | | C10.25(C4xS3) | 240,57 |
C10.26(C4×S3) = C5×D6⋊C4 | central extension (φ=1) | 120 | | C10.26(C4xS3) | 240,59 |