Extensions 1→N→G→Q→1 with N=C10 and Q=C4×S3

Direct product G=N×Q with N=C10 and Q=C4×S3
dρLabelID
S3×C2×C20120S3xC2xC20240,166

Semidirect products G=N:Q with N=C10 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C10⋊(C4×S3) = C2×S3×F5φ: C4×S3/S3C4 ⊆ Aut C10308+C10:(C4xS3)240,195
C102(C4×S3) = C2×D30.C2φ: C4×S3/Dic3C2 ⊆ Aut C10120C10:2(C4xS3)240,144
C103(C4×S3) = C2×C4×D15φ: C4×S3/C12C2 ⊆ Aut C10120C10:3(C4xS3)240,176
C104(C4×S3) = C2×S3×Dic5φ: C4×S3/D6C2 ⊆ Aut C10120C10:4(C4xS3)240,142

Non-split extensions G=N.Q with N=C10 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C10.1(C4×S3) = Dic3×F5φ: C4×S3/S3C4 ⊆ Aut C10608-C10.1(C4xS3)240,95
C10.2(C4×S3) = D6⋊F5φ: C4×S3/S3C4 ⊆ Aut C10608+C10.2(C4xS3)240,96
C10.3(C4×S3) = Dic3⋊F5φ: C4×S3/S3C4 ⊆ Aut C10608-C10.3(C4xS3)240,97
C10.4(C4×S3) = S3×C5⋊C8φ: C4×S3/S3C4 ⊆ Aut C101208-C10.4(C4xS3)240,98
C10.5(C4×S3) = D15⋊C8φ: C4×S3/S3C4 ⊆ Aut C101208+C10.5(C4xS3)240,99
C10.6(C4×S3) = D6.F5φ: C4×S3/S3C4 ⊆ Aut C101208-C10.6(C4xS3)240,100
C10.7(C4×S3) = Dic3.F5φ: C4×S3/S3C4 ⊆ Aut C101208+C10.7(C4xS3)240,101
C10.8(C4×S3) = D152C8φ: C4×S3/Dic3C2 ⊆ Aut C101204C10.8(C4xS3)240,9
C10.9(C4×S3) = D30.5C4φ: C4×S3/Dic3C2 ⊆ Aut C101204C10.9(C4xS3)240,12
C10.10(C4×S3) = D304C4φ: C4×S3/Dic3C2 ⊆ Aut C10120C10.10(C4xS3)240,28
C10.11(C4×S3) = Dic155C4φ: C4×S3/Dic3C2 ⊆ Aut C10240C10.11(C4xS3)240,30
C10.12(C4×S3) = C8×D15φ: C4×S3/C12C2 ⊆ Aut C101202C10.12(C4xS3)240,65
C10.13(C4×S3) = C40⋊S3φ: C4×S3/C12C2 ⊆ Aut C101202C10.13(C4xS3)240,66
C10.14(C4×S3) = C4×Dic15φ: C4×S3/C12C2 ⊆ Aut C10240C10.14(C4xS3)240,72
C10.15(C4×S3) = C30.4Q8φ: C4×S3/C12C2 ⊆ Aut C10240C10.15(C4xS3)240,73
C10.16(C4×S3) = D303C4φ: C4×S3/C12C2 ⊆ Aut C10120C10.16(C4xS3)240,75
C10.17(C4×S3) = S3×C52C8φ: C4×S3/D6C2 ⊆ Aut C101204C10.17(C4xS3)240,8
C10.18(C4×S3) = D6.Dic5φ: C4×S3/D6C2 ⊆ Aut C101204C10.18(C4xS3)240,11
C10.19(C4×S3) = Dic3×Dic5φ: C4×S3/D6C2 ⊆ Aut C10240C10.19(C4xS3)240,25
C10.20(C4×S3) = D6⋊Dic5φ: C4×S3/D6C2 ⊆ Aut C10120C10.20(C4xS3)240,27
C10.21(C4×S3) = C6.Dic10φ: C4×S3/D6C2 ⊆ Aut C10240C10.21(C4xS3)240,31
C10.22(C4×S3) = S3×C40central extension (φ=1)1202C10.22(C4xS3)240,49
C10.23(C4×S3) = C5×C8⋊S3central extension (φ=1)1202C10.23(C4xS3)240,50
C10.24(C4×S3) = Dic3×C20central extension (φ=1)240C10.24(C4xS3)240,56
C10.25(C4×S3) = C5×Dic3⋊C4central extension (φ=1)240C10.25(C4xS3)240,57
C10.26(C4×S3) = C5×D6⋊C4central extension (φ=1)120C10.26(C4xS3)240,59

׿
×
𝔽