Extensions 1→N→G→Q→1 with N=C22 and Q=D28

Direct product G=N×Q with N=C22 and Q=D28

Semidirect products G=N:Q with N=C22 and Q=D28
extensionφ:Q→Aut NdρLabelID
C221D28 = C287D4φ: D28/C28C2 ⊆ Aut C22112C2^2:1D28224,125
C222D28 = C22⋊D28φ: D28/D14C2 ⊆ Aut C2256C2^2:2D28224,77

Non-split extensions G=N.Q with N=C22 and Q=D28
extensionφ:Q→Aut NdρLabelID
C22.1D28 = D567C2φ: D28/C28C2 ⊆ Aut C221122C2^2.1D28224,99
C22.2D28 = C23.1D14φ: D28/D14C2 ⊆ Aut C22564C2^2.2D28224,12
C22.3D28 = D284C4φ: D28/D14C2 ⊆ Aut C22564C2^2.3D28224,31
C22.4D28 = C22.D28φ: D28/D14C2 ⊆ Aut C22112C2^2.4D28224,81
C22.5D28 = C8⋊D14φ: D28/D14C2 ⊆ Aut C22564+C2^2.5D28224,103
C22.6D28 = C8.D14φ: D28/D14C2 ⊆ Aut C221124-C2^2.6D28224,104
C22.7D28 = C28.44D4central extension (φ=1)224C2^2.7D28224,22
C22.8D28 = C8⋊Dic7central extension (φ=1)224C2^2.8D28224,23
C22.9D28 = C561C4central extension (φ=1)224C2^2.9D28224,24
C22.10D28 = C2.D56central extension (φ=1)112C2^2.10D28224,27
C22.11D28 = C14.C42central extension (φ=1)224C2^2.11D28224,37
C22.12D28 = C2×C56⋊C2central extension (φ=1)112C2^2.12D28224,97
C22.13D28 = C2×D56central extension (φ=1)112C2^2.13D28224,98
C22.14D28 = C2×Dic28central extension (φ=1)224C2^2.14D28224,100
C22.15D28 = C2×C4⋊Dic7central extension (φ=1)224C2^2.15D28224,120
C22.16D28 = C2×D14⋊C4central extension (φ=1)112C2^2.16D28224,122