Copied to
clipboard

G = C287D4order 224 = 25·7

1st semidirect product of C28 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C287D4, C221D28, C23.24D14, (C2×C14)⋊5D4, D14⋊C43C2, (C2×D28)⋊6C2, C73(C4⋊D4), C43(C7⋊D4), C4⋊Dic79C2, (C22×C4)⋊4D7, (C22×C28)⋊6C2, C2.17(C2×D28), (C2×C4).85D14, C14.43(C2×D4), C2.19(C4○D28), C14.19(C4○D4), (C2×C14).48C23, (C2×C28).94C22, C22.56(C22×D7), (C22×C14).40C22, (C2×Dic7).16C22, (C22×D7).10C22, (C2×C7⋊D4)⋊3C2, C2.7(C2×C7⋊D4), SmallGroup(224,125)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C287D4
C1C7C14C2×C14C22×D7C2×D28 — C287D4
C7C2×C14 — C287D4
C1C22C22×C4

Generators and relations for C287D4
 G = < a,b,c | a28=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 430 in 94 conjugacy classes, 37 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C14, C4⋊D4, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C4⋊Dic7, D14⋊C4, C2×D28, C2×C7⋊D4, C22×C28, C287D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, D28, C7⋊D4, C22×D7, C2×D28, C4○D28, C2×C7⋊D4, C287D4

Smallest permutation representation of C287D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 81 91 40)(2 80 92 39)(3 79 93 38)(4 78 94 37)(5 77 95 36)(6 76 96 35)(7 75 97 34)(8 74 98 33)(9 73 99 32)(10 72 100 31)(11 71 101 30)(12 70 102 29)(13 69 103 56)(14 68 104 55)(15 67 105 54)(16 66 106 53)(17 65 107 52)(18 64 108 51)(19 63 109 50)(20 62 110 49)(21 61 111 48)(22 60 112 47)(23 59 85 46)(24 58 86 45)(25 57 87 44)(26 84 88 43)(27 83 89 42)(28 82 90 41)
(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 64)(30 63)(31 62)(32 61)(33 60)(34 59)(35 58)(36 57)(37 84)(38 83)(39 82)(40 81)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)(98 112)(99 111)(100 110)(101 109)(102 108)(103 107)(104 106)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,91,40)(2,80,92,39)(3,79,93,38)(4,78,94,37)(5,77,95,36)(6,76,96,35)(7,75,97,34)(8,74,98,33)(9,73,99,32)(10,72,100,31)(11,71,101,30)(12,70,102,29)(13,69,103,56)(14,68,104,55)(15,67,105,54)(16,66,106,53)(17,65,107,52)(18,64,108,51)(19,63,109,50)(20,62,110,49)(21,61,111,48)(22,60,112,47)(23,59,85,46)(24,58,86,45)(25,57,87,44)(26,84,88,43)(27,83,89,42)(28,82,90,41), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(98,112)(99,111)(100,110)(101,109)(102,108)(103,107)(104,106)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,81,91,40)(2,80,92,39)(3,79,93,38)(4,78,94,37)(5,77,95,36)(6,76,96,35)(7,75,97,34)(8,74,98,33)(9,73,99,32)(10,72,100,31)(11,71,101,30)(12,70,102,29)(13,69,103,56)(14,68,104,55)(15,67,105,54)(16,66,106,53)(17,65,107,52)(18,64,108,51)(19,63,109,50)(20,62,110,49)(21,61,111,48)(22,60,112,47)(23,59,85,46)(24,58,86,45)(25,57,87,44)(26,84,88,43)(27,83,89,42)(28,82,90,41), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(98,112)(99,111)(100,110)(101,109)(102,108)(103,107)(104,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,81,91,40),(2,80,92,39),(3,79,93,38),(4,78,94,37),(5,77,95,36),(6,76,96,35),(7,75,97,34),(8,74,98,33),(9,73,99,32),(10,72,100,31),(11,71,101,30),(12,70,102,29),(13,69,103,56),(14,68,104,55),(15,67,105,54),(16,66,106,53),(17,65,107,52),(18,64,108,51),(19,63,109,50),(20,62,110,49),(21,61,111,48),(22,60,112,47),(23,59,85,46),(24,58,86,45),(25,57,87,44),(26,84,88,43),(27,83,89,42),(28,82,90,41)], [(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,64),(30,63),(31,62),(32,61),(33,60),(34,59),(35,58),(36,57),(37,84),(38,83),(39,82),(40,81),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92),(98,112),(99,111),(100,110),(101,109),(102,108),(103,107),(104,106)]])

C287D4 is a maximal subgroup of
C14.C4≀C2  C22.2D56  D2813D4  D2814D4  C23.38D28  C22.D56  C23.13D28  Dic1414D4  (C2×C14).40D8  C4⋊C4.228D14  C4⋊C4.236D14  C7⋊C822D4  C4⋊D4⋊D7  C7⋊C824D4  C7⋊C86D4  C5630D4  C5629D4  C562D4  C563D4  (C2×C14)⋊8D8  (C7×Q8)⋊13D4  (C7×D4)⋊14D4  C42.276D14  C42.277D14  C24.27D14  C233D28  C24.30D14  C14.2- 1+4  C14.2+ 1+4  C14.112+ 1+4  C14.62- 1+4  C42.95D14  C42.97D14  C42.99D14  C42.100D14  C42.104D14  D4×D28  D2823D4  Dic1423D4  Dic1424D4  D45D28  D46D28  C4217D14  C42.116D14  C42.117D14  C42.119D14  C28⋊(C4○D4)  C14.682- 1+4  D7×C4⋊D4  C14.372+ 1+4  C14.382+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C22⋊Q825D7  C4⋊C426D14  C14.172- 1+4  C14.242- 1+4  C14.562+ 1+4  C14.572+ 1+4  C14.262- 1+4  C14.612+ 1+4  C14.662+ 1+4  C14.682+ 1+4  C14.862- 1+4  C24.72D14  D4×C7⋊D4  C14.452- 1+4  C14.1452+ 1+4  C14.1462+ 1+4  C14.1082- 1+4  C14.1482+ 1+4
C287D4 is a maximal quotient of
C284(C4⋊C4)  (C2×C4)⋊6D28  (C2×C42)⋊D7  C24.10D14  C232D28  C23.16D28  (C2×C4).44D28  (C2×C4)⋊3D28  (C2×C4).45D28  C287D8  D4.1D28  D4.2D28  Q8⋊D28  Q8.1D28  C287Q16  C5630D4  C5629D4  C56.82D4  C562D4  C563D4  C56.4D4  D4.3D28  D4.4D28  D4.5D28  C23.27D28  C23.28D28

62 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F7A7B7C14A···14U28A···28X
order1222222244444477714···1428···28
size1111222828222228282222···22···2

62 irreducible representations

dim111111222222222
type++++++++++++
imageC1C2C2C2C2C2D4D4D7C4○D4D14D14C7⋊D4D28C4○D28
kernelC287D4C4⋊Dic7D14⋊C4C2×D28C2×C7⋊D4C22×C28C28C2×C14C22×C4C14C2×C4C23C4C22C2
# reps112121223263121212

Matrix representation of C287D4 in GL4(𝔽29) generated by

25500
222300
002724
00512
,
02600
19000
00516
00224
,
02600
19000
0010
00328
G:=sub<GL(4,GF(29))| [25,22,0,0,5,23,0,0,0,0,27,5,0,0,24,12],[0,19,0,0,26,0,0,0,0,0,5,2,0,0,16,24],[0,19,0,0,26,0,0,0,0,0,1,3,0,0,0,28] >;

C287D4 in GAP, Magma, Sage, TeX

C_{28}\rtimes_7D_4
% in TeX

G:=Group("C28:7D4");
// GroupNames label

G:=SmallGroup(224,125);
// by ID

G=gap.SmallGroup(224,125);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,103,218,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽