Copied to
clipboard

G = D284C4order 224 = 25·7

4th semidirect product of D28 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D284C4, C28.54D4, Dic144C4, M4(2)⋊4D7, C22.3D28, C72C4≀C2, C4.3(C4×D7), C28.6(C2×C4), (C2×C14).1D4, C4○D28.2C2, (C4×Dic7)⋊1C2, (C2×C4).38D14, C4.29(C7⋊D4), (C7×M4(2))⋊8C2, C2.11(D14⋊C4), (C2×C28).15C22, C14.10(C22⋊C4), SmallGroup(224,31)

Series: Derived Chief Lower central Upper central

C1C28 — D284C4
C1C7C14C28C2×C28C4○D28 — D284C4
C7C14C28 — D284C4
C1C4C2×C4M4(2)

Generators and relations for D284C4
 G = < a,b,c | a28=b2=c4=1, bab=a-1, cac-1=a13, cbc-1=a19b >

2C2
28C2
14C4
14C22
14C4
14C4
2C14
4D7
2C8
7D4
7Q8
14C2×C4
14C2×C4
14D4
2Dic7
2Dic7
2D14
2Dic7
7C42
7C4○D4
2C4×D7
2C7⋊D4
2C2×Dic7
2C56
7C4≀C2

Smallest permutation representation of D284C4
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 54)(2 53)(3 52)(4 51)(5 50)(6 49)(7 48)(8 47)(9 46)(10 45)(11 44)(12 43)(13 42)(14 41)(15 40)(16 39)(17 38)(18 37)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)(25 30)(26 29)(27 56)(28 55)
(1 15)(2 28)(3 13)(4 26)(5 11)(6 24)(7 9)(8 22)(10 20)(12 18)(14 16)(17 27)(19 25)(21 23)(29 46 43 32)(30 31 44 45)(33 42 47 56)(34 55 48 41)(35 40 49 54)(36 53 50 39)(37 38 51 52)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,54)(2,53)(3,52)(4,51)(5,50)(6,49)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,56)(28,55), (1,15)(2,28)(3,13)(4,26)(5,11)(6,24)(7,9)(8,22)(10,20)(12,18)(14,16)(17,27)(19,25)(21,23)(29,46,43,32)(30,31,44,45)(33,42,47,56)(34,55,48,41)(35,40,49,54)(36,53,50,39)(37,38,51,52)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,54)(2,53)(3,52)(4,51)(5,50)(6,49)(7,48)(8,47)(9,46)(10,45)(11,44)(12,43)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,56)(28,55), (1,15)(2,28)(3,13)(4,26)(5,11)(6,24)(7,9)(8,22)(10,20)(12,18)(14,16)(17,27)(19,25)(21,23)(29,46,43,32)(30,31,44,45)(33,42,47,56)(34,55,48,41)(35,40,49,54)(36,53,50,39)(37,38,51,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,54),(2,53),(3,52),(4,51),(5,50),(6,49),(7,48),(8,47),(9,46),(10,45),(11,44),(12,43),(13,42),(14,41),(15,40),(16,39),(17,38),(18,37),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31),(25,30),(26,29),(27,56),(28,55)], [(1,15),(2,28),(3,13),(4,26),(5,11),(6,24),(7,9),(8,22),(10,20),(12,18),(14,16),(17,27),(19,25),(21,23),(29,46,43,32),(30,31,44,45),(33,42,47,56),(34,55,48,41),(35,40,49,54),(36,53,50,39),(37,38,51,52)]])

D284C4 is a maximal subgroup of
D28.1D4  D281D4  D28.4D4  D28.5D4  D7×C4≀C2  C42⋊D14  D5610C4  D567C4  C23.20D28  C56.93D4  C56.50D4  D2818D4  D28.38D4  D28.39D4  D28.40D4
D284C4 is a maximal quotient of
C42.D14  C42.2D14  C23.30D28  C22.2D56  D282C8  Dic142C8  C28.3C42

44 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H7A7B7C8A8B14A14B14C14D14E14F28A···28F28G28H28I56A···56L
order1222444444447778814141414141428···2828282856···56
size112281121414141428222442224442···24444···4

44 irreducible representations

dim111111222222224
type+++++++++
imageC1C2C2C2C4C4D4D4D7D14C4≀C2C4×D7C7⋊D4D28D284C4
kernelD284C4C4×Dic7C7×M4(2)C4○D28Dic14D28C28C2×C14M4(2)C2×C4C7C4C4C22C1
# reps111122113346666

Matrix representation of D284C4 in GL4(𝔽113) generated by

7910400
88000
00980
00015
,
0900
88000
00098
00150
,
984300
01500
001120
00015
G:=sub<GL(4,GF(113))| [79,88,0,0,104,0,0,0,0,0,98,0,0,0,0,15],[0,88,0,0,9,0,0,0,0,0,0,15,0,0,98,0],[98,0,0,0,43,15,0,0,0,0,112,0,0,0,0,15] >;

D284C4 in GAP, Magma, Sage, TeX

D_{28}\rtimes_4C_4
% in TeX

G:=Group("D28:4C4");
// GroupNames label

G:=SmallGroup(224,31);
// by ID

G=gap.SmallGroup(224,31);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,121,31,86,579,297,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^19*b>;
// generators/relations

Export

Subgroup lattice of D284C4 in TeX

׿
×
𝔽