Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=D5

Direct product G=N×Q with N=C2×Dic3 and Q=D5
dρLabelID
C2×D5×Dic3120C2xD5xDic3240,139

Semidirect products G=N:Q with N=C2×Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1D5 = D10⋊Dic3φ: D5/C5C2 ⊆ Out C2×Dic3120(C2xDic3):1D5240,26
(C2×Dic3)⋊2D5 = D304C4φ: D5/C5C2 ⊆ Out C2×Dic3120(C2xDic3):2D5240,28
(C2×Dic3)⋊3D5 = Dic5.D6φ: D5/C5C2 ⊆ Out C2×Dic31204(C2xDic3):3D5240,140
(C2×Dic3)⋊4D5 = C2×C3⋊D20φ: D5/C5C2 ⊆ Out C2×Dic3120(C2xDic3):4D5240,146
(C2×Dic3)⋊5D5 = C2×D30.C2φ: trivial image120(C2xDic3):5D5240,144

Non-split extensions G=N.Q with N=C2×Dic3 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1D5 = C30.Q8φ: D5/C5C2 ⊆ Out C2×Dic3240(C2xDic3).1D5240,29
(C2×Dic3).2D5 = Dic155C4φ: D5/C5C2 ⊆ Out C2×Dic3240(C2xDic3).2D5240,30
(C2×Dic3).3D5 = C6.Dic10φ: D5/C5C2 ⊆ Out C2×Dic3240(C2xDic3).3D5240,31
(C2×Dic3).4D5 = C2×C15⋊Q8φ: D5/C5C2 ⊆ Out C2×Dic3240(C2xDic3).4D5240,148
(C2×Dic3).5D5 = Dic3×Dic5φ: trivial image240(C2xDic3).5D5240,25

׿
×
𝔽