Extensions 1→N→G→Q→1 with N=C14 and Q=M4(2)

Direct product G=N×Q with N=C14 and Q=M4(2)

Semidirect products G=N:Q with N=C14 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C141M4(2) = C2×C8⋊D7φ: M4(2)/C8C2 ⊆ Aut C14112C14:1M4(2)224,95
C142M4(2) = C2×C4.Dic7φ: M4(2)/C2×C4C2 ⊆ Aut C14112C14:2M4(2)224,116

Non-split extensions G=N.Q with N=C14 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C14.1M4(2) = Dic7⋊C8φ: M4(2)/C8C2 ⊆ Aut C14224C14.1M4(2)224,20
C14.2M4(2) = C56⋊C4φ: M4(2)/C8C2 ⊆ Aut C14224C14.2M4(2)224,21
C14.3M4(2) = D14⋊C8φ: M4(2)/C8C2 ⊆ Aut C14112C14.3M4(2)224,26
C14.4M4(2) = C42.D7φ: M4(2)/C2×C4C2 ⊆ Aut C14224C14.4M4(2)224,9
C14.5M4(2) = C28⋊C8φ: M4(2)/C2×C4C2 ⊆ Aut C14224C14.5M4(2)224,10
C14.6M4(2) = C28.55D4φ: M4(2)/C2×C4C2 ⊆ Aut C14112C14.6M4(2)224,36
C14.7M4(2) = C7×C8⋊C4central extension (φ=1)224C14.7M4(2)224,46
C14.8M4(2) = C7×C22⋊C8central extension (φ=1)112C14.8M4(2)224,47
C14.9M4(2) = C7×C4⋊C8central extension (φ=1)224C14.9M4(2)224,54