Copied to
clipboard

G = C28.55D4order 224 = 25·7

12nd non-split extension by C28 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.55D4, C14.6M4(2), C23.2Dic7, C22:(C7:C8), (C2xC14):2C8, C7:2(C22:C8), (C2xC28).4C4, C14.10(C2xC8), (C2xC4).94D14, (C2xC4).4Dic7, (C22xC4).1D7, C4.30(C7:D4), (C22xC14).5C4, (C22xC28).11C2, C2.3(C4.Dic7), C2.1(C23.D7), C22.9(C2xDic7), C14.12(C22:C4), (C2xC28).108C22, C2.5(C2xC7:C8), (C2xC7:C8):10C2, (C2xC14).27(C2xC4), SmallGroup(224,36)

Series: Derived Chief Lower central Upper central

C1C14 — C28.55D4
C1C7C14C28C2xC28C2xC7:C8 — C28.55D4
C7C14 — C28.55D4
C1C2xC4C22xC4

Generators and relations for C28.55D4
 G = < a,b,c | a28=1, b4=a14, c2=a21, bab-1=cac-1=a13, cbc-1=a7b3 >

Subgroups: 110 in 50 conjugacy classes, 29 normal (19 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, D7, C22:C4, C2xC8, M4(2), Dic7, D14, C22:C8, C7:C8, C2xDic7, C7:D4, C2xC7:C8, C4.Dic7, C23.D7, C28.55D4
2C2
2C2
2C4
2C22
2C22
2C14
2C14
2C2xC4
2C2xC4
14C8
14C8
2C2xC14
2C28
2C2xC14
7C2xC8
7C2xC8
2C7:C8
2C2xC28
2C7:C8
2C2xC28
7C22:C8

Smallest permutation representation of C28.55D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 68 102 36 15 82 88 50)(2 81 103 49 16 67 89 35)(3 66 104 34 17 80 90 48)(4 79 105 47 18 65 91 33)(5 64 106 32 19 78 92 46)(6 77 107 45 20 63 93 31)(7 62 108 30 21 76 94 44)(8 75 109 43 22 61 95 29)(9 60 110 56 23 74 96 42)(10 73 111 41 24 59 97 55)(11 58 112 54 25 72 98 40)(12 71 85 39 26 57 99 53)(13 84 86 52 27 70 100 38)(14 69 87 37 28 83 101 51)
(1 43 22 36 15 29 8 50)(2 56 23 49 16 42 9 35)(3 41 24 34 17 55 10 48)(4 54 25 47 18 40 11 33)(5 39 26 32 19 53 12 46)(6 52 27 45 20 38 13 31)(7 37 28 30 21 51 14 44)(57 99 78 92 71 85 64 106)(58 112 79 105 72 98 65 91)(59 97 80 90 73 111 66 104)(60 110 81 103 74 96 67 89)(61 95 82 88 75 109 68 102)(62 108 83 101 76 94 69 87)(63 93 84 86 77 107 70 100)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,68,102,36,15,82,88,50)(2,81,103,49,16,67,89,35)(3,66,104,34,17,80,90,48)(4,79,105,47,18,65,91,33)(5,64,106,32,19,78,92,46)(6,77,107,45,20,63,93,31)(7,62,108,30,21,76,94,44)(8,75,109,43,22,61,95,29)(9,60,110,56,23,74,96,42)(10,73,111,41,24,59,97,55)(11,58,112,54,25,72,98,40)(12,71,85,39,26,57,99,53)(13,84,86,52,27,70,100,38)(14,69,87,37,28,83,101,51), (1,43,22,36,15,29,8,50)(2,56,23,49,16,42,9,35)(3,41,24,34,17,55,10,48)(4,54,25,47,18,40,11,33)(5,39,26,32,19,53,12,46)(6,52,27,45,20,38,13,31)(7,37,28,30,21,51,14,44)(57,99,78,92,71,85,64,106)(58,112,79,105,72,98,65,91)(59,97,80,90,73,111,66,104)(60,110,81,103,74,96,67,89)(61,95,82,88,75,109,68,102)(62,108,83,101,76,94,69,87)(63,93,84,86,77,107,70,100)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,68,102,36,15,82,88,50)(2,81,103,49,16,67,89,35)(3,66,104,34,17,80,90,48)(4,79,105,47,18,65,91,33)(5,64,106,32,19,78,92,46)(6,77,107,45,20,63,93,31)(7,62,108,30,21,76,94,44)(8,75,109,43,22,61,95,29)(9,60,110,56,23,74,96,42)(10,73,111,41,24,59,97,55)(11,58,112,54,25,72,98,40)(12,71,85,39,26,57,99,53)(13,84,86,52,27,70,100,38)(14,69,87,37,28,83,101,51), (1,43,22,36,15,29,8,50)(2,56,23,49,16,42,9,35)(3,41,24,34,17,55,10,48)(4,54,25,47,18,40,11,33)(5,39,26,32,19,53,12,46)(6,52,27,45,20,38,13,31)(7,37,28,30,21,51,14,44)(57,99,78,92,71,85,64,106)(58,112,79,105,72,98,65,91)(59,97,80,90,73,111,66,104)(60,110,81,103,74,96,67,89)(61,95,82,88,75,109,68,102)(62,108,83,101,76,94,69,87)(63,93,84,86,77,107,70,100) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,68,102,36,15,82,88,50),(2,81,103,49,16,67,89,35),(3,66,104,34,17,80,90,48),(4,79,105,47,18,65,91,33),(5,64,106,32,19,78,92,46),(6,77,107,45,20,63,93,31),(7,62,108,30,21,76,94,44),(8,75,109,43,22,61,95,29),(9,60,110,56,23,74,96,42),(10,73,111,41,24,59,97,55),(11,58,112,54,25,72,98,40),(12,71,85,39,26,57,99,53),(13,84,86,52,27,70,100,38),(14,69,87,37,28,83,101,51)], [(1,43,22,36,15,29,8,50),(2,56,23,49,16,42,9,35),(3,41,24,34,17,55,10,48),(4,54,25,47,18,40,11,33),(5,39,26,32,19,53,12,46),(6,52,27,45,20,38,13,31),(7,37,28,30,21,51,14,44),(57,99,78,92,71,85,64,106),(58,112,79,105,72,98,65,91),(59,97,80,90,73,111,66,104),(60,110,81,103,74,96,67,89),(61,95,82,88,75,109,68,102),(62,108,83,101,76,94,69,87),(63,93,84,86,77,107,70,100)]])

C28.55D4 is a maximal subgroup of
C14.C4wrC2  C4:Dic7:C4  (C22xD7):C8  (C2xDic7):C8  C24.Dic7  (C2xC28):C8  (D4xC14):C4  C4:C4:Dic7  Dic7.5M4(2)  Dic7.M4(2)  C56:C4:C2  D7xC22:C8  D14:M4(2)  D14:C8:C2  C42.6Dic7  C42.7Dic7  (C2xC14).40D8  C4:C4.228D14  C4:C4.230D14  C4:C4.231D14  C4:C4.233D14  C42.187D14  C4:C4.236D14  D4xC7:C8  C42.47D14  C28:3M4(2)  (C2xC14).D8  C4:D4.D7  (C2xD4).D14  D28:16D4  D28:17D4  Dic14:17D4  C22:Q8.D7  (C2xC14).Q16  C14.(C4oD8)  D28.36D4  D28.37D4  Dic14.37D4  C8xC7:D4  C56:32D4  C56:D4  C56:18D4  C24.4Dic7  (C2xC14):8D8  (C7xD4).31D4  (C7xQ8):13D4  (C2xC14):8Q16  (D4xC14).11C4  (C7xD4):14D4  (C7xD4).32D4
C28.55D4 is a maximal quotient of
(C2xC28):3C8  C24.Dic7  (C2xC28):C8  C28.57D8  C28.26Q16  C56.91D4  C56.D4  C56.92D4

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A7B7C8A···8H14A···14U28A···28X
order1222224444447778···814···1428···28
size11112211112222214···142···22···2

68 irreducible representations

dim111111222222222
type+++++-+-
imageC1C2C2C4C4C8D4D7M4(2)Dic7D14Dic7C7:D4C7:C8C4.Dic7
kernelC28.55D4C2xC7:C8C22xC28C2xC28C22xC14C2xC14C28C22xC4C14C2xC4C2xC4C23C4C22C2
# reps121228232333121212

Matrix representation of C28.55D4 in GL4(F113) generated by

15000
01500
003283
00060
,
0100
98000
002103
0081111
,
0100
15000
002103
0081111
G:=sub<GL(4,GF(113))| [15,0,0,0,0,15,0,0,0,0,32,0,0,0,83,60],[0,98,0,0,1,0,0,0,0,0,2,81,0,0,103,111],[0,15,0,0,1,0,0,0,0,0,2,81,0,0,103,111] >;

C28.55D4 in GAP, Magma, Sage, TeX

C_{28}._{55}D_4
% in TeX

G:=Group("C28.55D4");
// GroupNames label

G:=SmallGroup(224,36);
// by ID

G=gap.SmallGroup(224,36);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,86,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^4=a^14,c^2=a^21,b*a*b^-1=c*a*c^-1=a^13,c*b*c^-1=a^7*b^3>;
// generators/relations

Export

Subgroup lattice of C28.55D4 in TeX

׿
x
:
Z
F
o
wr
Q
<