Copied to
clipboard

G = C14×M4(2)  order 224 = 25·7

Direct product of C14 and M4(2)

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C14×M4(2), C5614C22, C23.3C28, C28.53C23, (C2×C8)⋊6C14, C84(C2×C14), (C2×C56)⋊14C2, (C2×C4).6C28, C4.10(C2×C28), (C2×C28).15C4, C28.47(C2×C4), C2.6(C22×C28), (C22×C4).6C14, (C22×C14).4C4, C22.6(C2×C28), (C22×C28).16C2, C14.34(C22×C4), C4.11(C22×C14), (C2×C28).127C22, (C2×C4).33(C2×C14), (C2×C14).23(C2×C4), SmallGroup(224,165)

Series: Derived Chief Lower central Upper central

C1C2 — C14×M4(2)
C1C2C4C28C56C7×M4(2) — C14×M4(2)
C1C2 — C14×M4(2)
C1C2×C28 — C14×M4(2)

Generators and relations for C14×M4(2)
 G = < a,b,c | a14=b8=c2=1, ab=ba, ac=ca, cbc=b5 >

Subgroups: 76 in 68 conjugacy classes, 60 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C23, C14, C14, C14, C2×C8, M4(2), C22×C4, C28, C28, C2×C14, C2×C14, C2×C14, C2×M4(2), C56, C2×C28, C2×C28, C22×C14, C2×C56, C7×M4(2), C22×C28, C14×M4(2)
Quotients: C1, C2, C4, C22, C7, C2×C4, C23, C14, M4(2), C22×C4, C28, C2×C14, C2×M4(2), C2×C28, C22×C14, C7×M4(2), C22×C28, C14×M4(2)

Smallest permutation representation of C14×M4(2)
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 112 35 77 62 87 52 15)(2 99 36 78 63 88 53 16)(3 100 37 79 64 89 54 17)(4 101 38 80 65 90 55 18)(5 102 39 81 66 91 56 19)(6 103 40 82 67 92 43 20)(7 104 41 83 68 93 44 21)(8 105 42 84 69 94 45 22)(9 106 29 71 70 95 46 23)(10 107 30 72 57 96 47 24)(11 108 31 73 58 97 48 25)(12 109 32 74 59 98 49 26)(13 110 33 75 60 85 50 27)(14 111 34 76 61 86 51 28)
(15 77)(16 78)(17 79)(18 80)(19 81)(20 82)(21 83)(22 84)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(85 110)(86 111)(87 112)(88 99)(89 100)(90 101)(91 102)(92 103)(93 104)(94 105)(95 106)(96 107)(97 108)(98 109)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,112,35,77,62,87,52,15)(2,99,36,78,63,88,53,16)(3,100,37,79,64,89,54,17)(4,101,38,80,65,90,55,18)(5,102,39,81,66,91,56,19)(6,103,40,82,67,92,43,20)(7,104,41,83,68,93,44,21)(8,105,42,84,69,94,45,22)(9,106,29,71,70,95,46,23)(10,107,30,72,57,96,47,24)(11,108,31,73,58,97,48,25)(12,109,32,74,59,98,49,26)(13,110,33,75,60,85,50,27)(14,111,34,76,61,86,51,28), (15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(85,110)(86,111)(87,112)(88,99)(89,100)(90,101)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(97,108)(98,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,112,35,77,62,87,52,15)(2,99,36,78,63,88,53,16)(3,100,37,79,64,89,54,17)(4,101,38,80,65,90,55,18)(5,102,39,81,66,91,56,19)(6,103,40,82,67,92,43,20)(7,104,41,83,68,93,44,21)(8,105,42,84,69,94,45,22)(9,106,29,71,70,95,46,23)(10,107,30,72,57,96,47,24)(11,108,31,73,58,97,48,25)(12,109,32,74,59,98,49,26)(13,110,33,75,60,85,50,27)(14,111,34,76,61,86,51,28), (15,77)(16,78)(17,79)(18,80)(19,81)(20,82)(21,83)(22,84)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(85,110)(86,111)(87,112)(88,99)(89,100)(90,101)(91,102)(92,103)(93,104)(94,105)(95,106)(96,107)(97,108)(98,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,112,35,77,62,87,52,15),(2,99,36,78,63,88,53,16),(3,100,37,79,64,89,54,17),(4,101,38,80,65,90,55,18),(5,102,39,81,66,91,56,19),(6,103,40,82,67,92,43,20),(7,104,41,83,68,93,44,21),(8,105,42,84,69,94,45,22),(9,106,29,71,70,95,46,23),(10,107,30,72,57,96,47,24),(11,108,31,73,58,97,48,25),(12,109,32,74,59,98,49,26),(13,110,33,75,60,85,50,27),(14,111,34,76,61,86,51,28)], [(15,77),(16,78),(17,79),(18,80),(19,81),(20,82),(21,83),(22,84),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(85,110),(86,111),(87,112),(88,99),(89,100),(90,101),(91,102),(92,103),(93,104),(94,105),(95,106),(96,107),(97,108),(98,109)]])

C14×M4(2) is a maximal subgroup of
C56.D4  M4(2)⋊Dic7  C28.3C42  (C2×C56)⋊C4  C23.9D28  C28.4C42  M4(2)⋊4Dic7  C28.21C42  Dic74M4(2)  C28.439(C2×D4)  C23.46D28  C23.47D28  C28.7C42  C23.Dic14  M4(2).Dic7  D146M4(2)  C56⋊D4  C5618D4  (C2×D28).14C4  C23.48D28  M4(2).31D14  C23.49D28  C562D4  C563D4  C56.4D4  C23.20D28  C28.70C24  C56.9C23

140 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A···7F8A···8H14A···14R14S···14AD28A···28X28Y···28AJ56A···56AV
order1222224444447···78···814···1414···1428···2828···2856···56
size1111221111221···12···21···12···21···12···22···2

140 irreducible representations

dim11111111111122
type++++
imageC1C2C2C2C4C4C7C14C14C14C28C28M4(2)C7×M4(2)
kernelC14×M4(2)C2×C56C7×M4(2)C22×C28C2×C28C22×C14C2×M4(2)C2×C8M4(2)C22×C4C2×C4C23C14C2
# reps1241626122463612424

Matrix representation of C14×M4(2) in GL3(𝔽113) generated by

11200
01060
00106
,
100
01002
03613
,
11200
010
013112
G:=sub<GL(3,GF(113))| [112,0,0,0,106,0,0,0,106],[1,0,0,0,100,36,0,2,13],[112,0,0,0,1,13,0,0,112] >;

C14×M4(2) in GAP, Magma, Sage, TeX

C_{14}\times M_4(2)
% in TeX

G:=Group("C14xM4(2)");
// GroupNames label

G:=SmallGroup(224,165);
// by ID

G=gap.SmallGroup(224,165);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,336,1369,88]);
// Polycyclic

G:=Group<a,b,c|a^14=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations

׿
×
𝔽