Copied to
clipboard

G = D125order 250 = 2·53

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D125, C125⋊C2, C25.D5, C5.D25, sometimes denoted D250 or Dih125 or Dih250, SmallGroup(250,1)

Series: Derived Chief Lower central Upper central

C1C125 — D125
C1C5C25C125 — D125
C125 — D125
C1

Generators and relations for D125
 G = < a,b | a125=b2=1, bab=a-1 >

125C2
25D5
5D25

Smallest permutation representation of D125
On 125 points
Generators in S125
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125)
(2 125)(3 124)(4 123)(5 122)(6 121)(7 120)(8 119)(9 118)(10 117)(11 116)(12 115)(13 114)(14 113)(15 112)(16 111)(17 110)(18 109)(19 108)(20 107)(21 106)(22 105)(23 104)(24 103)(25 102)(26 101)(27 100)(28 99)(29 98)(30 97)(31 96)(32 95)(33 94)(34 93)(35 92)(36 91)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 84)(44 83)(45 82)(46 81)(47 80)(48 79)(49 78)(50 77)(51 76)(52 75)(53 74)(54 73)(55 72)(56 71)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)

G:=sub<Sym(125)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125), (2,125)(3,124)(4,123)(5,122)(6,121)(7,120)(8,119)(9,118)(10,117)(11,116)(12,115)(13,114)(14,113)(15,112)(16,111)(17,110)(18,109)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,100)(28,99)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125), (2,125)(3,124)(4,123)(5,122)(6,121)(7,120)(8,119)(9,118)(10,117)(11,116)(12,115)(13,114)(14,113)(15,112)(16,111)(17,110)(18,109)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,100)(28,99)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)(49,78)(50,77)(51,76)(52,75)(53,74)(54,73)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125)], [(2,125),(3,124),(4,123),(5,122),(6,121),(7,120),(8,119),(9,118),(10,117),(11,116),(12,115),(13,114),(14,113),(15,112),(16,111),(17,110),(18,109),(19,108),(20,107),(21,106),(22,105),(23,104),(24,103),(25,102),(26,101),(27,100),(28,99),(29,98),(30,97),(31,96),(32,95),(33,94),(34,93),(35,92),(36,91),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,84),(44,83),(45,82),(46,81),(47,80),(48,79),(49,78),(50,77),(51,76),(52,75),(53,74),(54,73),(55,72),(56,71),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64)])

D125 is a maximal subgroup of   C125⋊C4
D125 is a maximal quotient of   Dic125

64 conjugacy classes

class 1  2 5A5B25A···25J125A···125AX
order125525···25125···125
size1125222···22···2

64 irreducible representations

dim11222
type+++++
imageC1C2D5D25D125
kernelD125C125C25C5C1
# reps1121050

Matrix representation of D125 in GL2(𝔽251) generated by

199207
4471
,
10
117250
G:=sub<GL(2,GF(251))| [199,44,207,71],[1,117,0,250] >;

D125 in GAP, Magma, Sage, TeX

D_{125}
% in TeX

G:=Group("D125");
// GroupNames label

G:=SmallGroup(250,1);
// by ID

G=gap.SmallGroup(250,1);
# by ID

G:=PCGroup([4,-2,-5,-5,-5,145,365,1082,250,3203]);
// Polycyclic

G:=Group<a,b|a^125=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D125 in TeX

׿
×
𝔽