direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C7×C5⋊D4, C35⋊9D4, Dic5⋊C14, D10⋊2C14, C14.17D10, C70.22C22, C5⋊2(C7×D4), C22⋊(C7×D5), (C2×C70)⋊6C2, (C2×C14)⋊1D5, (C2×C10)⋊2C14, (D5×C14)⋊5C2, C2.5(D5×C14), C10.5(C2×C14), (C7×Dic5)⋊4C2, SmallGroup(280,23)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×C5⋊D4
G = < a,b,c,d | a7=b5=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)
(1 97 89 24 76)(2 98 90 25 77)(3 92 91 26 71)(4 93 85 27 72)(5 94 86 28 73)(6 95 87 22 74)(7 96 88 23 75)(8 133 19 51 122)(9 127 20 52 123)(10 128 21 53 124)(11 129 15 54 125)(12 130 16 55 126)(13 131 17 56 120)(14 132 18 50 121)(29 61 40 111 136)(30 62 41 112 137)(31 63 42 106 138)(32 57 36 107 139)(33 58 37 108 140)(34 59 38 109 134)(35 60 39 110 135)(43 66 118 100 79)(44 67 119 101 80)(45 68 113 102 81)(46 69 114 103 82)(47 70 115 104 83)(48 64 116 105 84)(49 65 117 99 78)
(1 132 78 39)(2 133 79 40)(3 127 80 41)(4 128 81 42)(5 129 82 36)(6 130 83 37)(7 131 84 38)(8 43 61 98)(9 44 62 92)(10 45 63 93)(11 46 57 94)(12 47 58 95)(13 48 59 96)(14 49 60 97)(15 103 107 73)(16 104 108 74)(17 105 109 75)(18 99 110 76)(19 100 111 77)(20 101 112 71)(21 102 106 72)(22 55 115 140)(23 56 116 134)(24 50 117 135)(25 51 118 136)(26 52 119 137)(27 53 113 138)(28 54 114 139)(29 90 122 66)(30 91 123 67)(31 85 124 68)(32 86 125 69)(33 87 126 70)(34 88 120 64)(35 89 121 65)
(8 111)(9 112)(10 106)(11 107)(12 108)(13 109)(14 110)(15 57)(16 58)(17 59)(18 60)(19 61)(20 62)(21 63)(22 87)(23 88)(24 89)(25 90)(26 91)(27 85)(28 86)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 50)(36 129)(37 130)(38 131)(39 132)(40 133)(41 127)(42 128)(43 100)(44 101)(45 102)(46 103)(47 104)(48 105)(49 99)(64 116)(65 117)(66 118)(67 119)(68 113)(69 114)(70 115)(71 92)(72 93)(73 94)(74 95)(75 96)(76 97)(77 98)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)
G:=sub<Sym(140)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140), (1,97,89,24,76)(2,98,90,25,77)(3,92,91,26,71)(4,93,85,27,72)(5,94,86,28,73)(6,95,87,22,74)(7,96,88,23,75)(8,133,19,51,122)(9,127,20,52,123)(10,128,21,53,124)(11,129,15,54,125)(12,130,16,55,126)(13,131,17,56,120)(14,132,18,50,121)(29,61,40,111,136)(30,62,41,112,137)(31,63,42,106,138)(32,57,36,107,139)(33,58,37,108,140)(34,59,38,109,134)(35,60,39,110,135)(43,66,118,100,79)(44,67,119,101,80)(45,68,113,102,81)(46,69,114,103,82)(47,70,115,104,83)(48,64,116,105,84)(49,65,117,99,78), (1,132,78,39)(2,133,79,40)(3,127,80,41)(4,128,81,42)(5,129,82,36)(6,130,83,37)(7,131,84,38)(8,43,61,98)(9,44,62,92)(10,45,63,93)(11,46,57,94)(12,47,58,95)(13,48,59,96)(14,49,60,97)(15,103,107,73)(16,104,108,74)(17,105,109,75)(18,99,110,76)(19,100,111,77)(20,101,112,71)(21,102,106,72)(22,55,115,140)(23,56,116,134)(24,50,117,135)(25,51,118,136)(26,52,119,137)(27,53,113,138)(28,54,114,139)(29,90,122,66)(30,91,123,67)(31,85,124,68)(32,86,125,69)(33,87,126,70)(34,88,120,64)(35,89,121,65), (8,111)(9,112)(10,106)(11,107)(12,108)(13,109)(14,110)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,87)(23,88)(24,89)(25,90)(26,91)(27,85)(28,86)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,50)(36,129)(37,130)(38,131)(39,132)(40,133)(41,127)(42,128)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,99)(64,116)(65,117)(66,118)(67,119)(68,113)(69,114)(70,115)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140), (1,97,89,24,76)(2,98,90,25,77)(3,92,91,26,71)(4,93,85,27,72)(5,94,86,28,73)(6,95,87,22,74)(7,96,88,23,75)(8,133,19,51,122)(9,127,20,52,123)(10,128,21,53,124)(11,129,15,54,125)(12,130,16,55,126)(13,131,17,56,120)(14,132,18,50,121)(29,61,40,111,136)(30,62,41,112,137)(31,63,42,106,138)(32,57,36,107,139)(33,58,37,108,140)(34,59,38,109,134)(35,60,39,110,135)(43,66,118,100,79)(44,67,119,101,80)(45,68,113,102,81)(46,69,114,103,82)(47,70,115,104,83)(48,64,116,105,84)(49,65,117,99,78), (1,132,78,39)(2,133,79,40)(3,127,80,41)(4,128,81,42)(5,129,82,36)(6,130,83,37)(7,131,84,38)(8,43,61,98)(9,44,62,92)(10,45,63,93)(11,46,57,94)(12,47,58,95)(13,48,59,96)(14,49,60,97)(15,103,107,73)(16,104,108,74)(17,105,109,75)(18,99,110,76)(19,100,111,77)(20,101,112,71)(21,102,106,72)(22,55,115,140)(23,56,116,134)(24,50,117,135)(25,51,118,136)(26,52,119,137)(27,53,113,138)(28,54,114,139)(29,90,122,66)(30,91,123,67)(31,85,124,68)(32,86,125,69)(33,87,126,70)(34,88,120,64)(35,89,121,65), (8,111)(9,112)(10,106)(11,107)(12,108)(13,109)(14,110)(15,57)(16,58)(17,59)(18,60)(19,61)(20,62)(21,63)(22,87)(23,88)(24,89)(25,90)(26,91)(27,85)(28,86)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,50)(36,129)(37,130)(38,131)(39,132)(40,133)(41,127)(42,128)(43,100)(44,101)(45,102)(46,103)(47,104)(48,105)(49,99)(64,116)(65,117)(66,118)(67,119)(68,113)(69,114)(70,115)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140)], [(1,97,89,24,76),(2,98,90,25,77),(3,92,91,26,71),(4,93,85,27,72),(5,94,86,28,73),(6,95,87,22,74),(7,96,88,23,75),(8,133,19,51,122),(9,127,20,52,123),(10,128,21,53,124),(11,129,15,54,125),(12,130,16,55,126),(13,131,17,56,120),(14,132,18,50,121),(29,61,40,111,136),(30,62,41,112,137),(31,63,42,106,138),(32,57,36,107,139),(33,58,37,108,140),(34,59,38,109,134),(35,60,39,110,135),(43,66,118,100,79),(44,67,119,101,80),(45,68,113,102,81),(46,69,114,103,82),(47,70,115,104,83),(48,64,116,105,84),(49,65,117,99,78)], [(1,132,78,39),(2,133,79,40),(3,127,80,41),(4,128,81,42),(5,129,82,36),(6,130,83,37),(7,131,84,38),(8,43,61,98),(9,44,62,92),(10,45,63,93),(11,46,57,94),(12,47,58,95),(13,48,59,96),(14,49,60,97),(15,103,107,73),(16,104,108,74),(17,105,109,75),(18,99,110,76),(19,100,111,77),(20,101,112,71),(21,102,106,72),(22,55,115,140),(23,56,116,134),(24,50,117,135),(25,51,118,136),(26,52,119,137),(27,53,113,138),(28,54,114,139),(29,90,122,66),(30,91,123,67),(31,85,124,68),(32,86,125,69),(33,87,126,70),(34,88,120,64),(35,89,121,65)], [(8,111),(9,112),(10,106),(11,107),(12,108),(13,109),(14,110),(15,57),(16,58),(17,59),(18,60),(19,61),(20,62),(21,63),(22,87),(23,88),(24,89),(25,90),(26,91),(27,85),(28,86),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,50),(36,129),(37,130),(38,131),(39,132),(40,133),(41,127),(42,128),(43,100),(44,101),(45,102),(46,103),(47,104),(48,105),(49,99),(64,116),(65,117),(66,118),(67,119),(68,113),(69,114),(70,115),(71,92),(72,93),(73,94),(74,95),(75,96),(76,97),(77,98),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140)]])
91 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 7A | ··· | 7F | 10A | ··· | 10F | 14A | ··· | 14F | 14G | ··· | 14L | 14M | ··· | 14R | 28A | ··· | 28F | 35A | ··· | 35L | 70A | ··· | 70AJ |
order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 7 | ··· | 7 | 10 | ··· | 10 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 35 | ··· | 35 | 70 | ··· | 70 |
size | 1 | 1 | 2 | 10 | 10 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 10 | ··· | 10 | 10 | ··· | 10 | 2 | ··· | 2 | 2 | ··· | 2 |
91 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C7 | C14 | C14 | C14 | D4 | D5 | D10 | C5⋊D4 | C7×D4 | C7×D5 | D5×C14 | C7×C5⋊D4 |
kernel | C7×C5⋊D4 | C7×Dic5 | D5×C14 | C2×C70 | C5⋊D4 | Dic5 | D10 | C2×C10 | C35 | C2×C14 | C14 | C7 | C5 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 1 | 2 | 2 | 4 | 6 | 12 | 12 | 24 |
Matrix representation of C7×C5⋊D4 ►in GL2(𝔽281) generated by
249 | 0 |
0 | 249 |
243 | 280 |
1 | 0 |
237 | 116 |
102 | 44 |
1 | 0 |
243 | 280 |
G:=sub<GL(2,GF(281))| [249,0,0,249],[243,1,280,0],[237,102,116,44],[1,243,0,280] >;
C7×C5⋊D4 in GAP, Magma, Sage, TeX
C_7\times C_5\rtimes D_4
% in TeX
G:=Group("C7xC5:D4");
// GroupNames label
G:=SmallGroup(280,23);
// by ID
G=gap.SmallGroup(280,23);
# by ID
G:=PCGroup([5,-2,-2,-7,-2,-5,301,5604]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^5=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export