Copied to
clipboard

G = D143order 286 = 2·11·13

Dihedral group

Aliases: D143, C13⋊D11, C11⋊D13, C1431C2, sometimes denoted D286 or Dih143 or Dih286, SmallGroup(286,3)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C143 — D143
 Chief series C1 — C13 — C143 — D143
 Lower central C143 — D143
 Upper central C1

Generators and relations for D143
G = < a,b | a143=b2=1, bab=a-1 >

143C2
13D11
11D13

Smallest permutation representation of D143
On 143 points
Generators in S143
```(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143)
(1 143)(2 142)(3 141)(4 140)(5 139)(6 138)(7 137)(8 136)(9 135)(10 134)(11 133)(12 132)(13 131)(14 130)(15 129)(16 128)(17 127)(18 126)(19 125)(20 124)(21 123)(22 122)(23 121)(24 120)(25 119)(26 118)(27 117)(28 116)(29 115)(30 114)(31 113)(32 112)(33 111)(34 110)(35 109)(36 108)(37 107)(38 106)(39 105)(40 104)(41 103)(42 102)(43 101)(44 100)(45 99)(46 98)(47 97)(48 96)(49 95)(50 94)(51 93)(52 92)(53 91)(54 90)(55 89)(56 88)(57 87)(58 86)(59 85)(60 84)(61 83)(62 82)(63 81)(64 80)(65 79)(66 78)(67 77)(68 76)(69 75)(70 74)(71 73)```

`G:=sub<Sym(143)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143), (1,143)(2,142)(3,141)(4,140)(5,139)(6,138)(7,137)(8,136)(9,135)(10,134)(11,133)(12,132)(13,131)(14,130)(15,129)(16,128)(17,127)(18,126)(19,125)(20,124)(21,123)(22,122)(23,121)(24,120)(25,119)(26,118)(27,117)(28,116)(29,115)(30,114)(31,113)(32,112)(33,111)(34,110)(35,109)(36,108)(37,107)(38,106)(39,105)(40,104)(41,103)(42,102)(43,101)(44,100)(45,99)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,90)(55,89)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143), (1,143)(2,142)(3,141)(4,140)(5,139)(6,138)(7,137)(8,136)(9,135)(10,134)(11,133)(12,132)(13,131)(14,130)(15,129)(16,128)(17,127)(18,126)(19,125)(20,124)(21,123)(22,122)(23,121)(24,120)(25,119)(26,118)(27,117)(28,116)(29,115)(30,114)(31,113)(32,112)(33,111)(34,110)(35,109)(36,108)(37,107)(38,106)(39,105)(40,104)(41,103)(42,102)(43,101)(44,100)(45,99)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,90)(55,89)(56,88)(57,87)(58,86)(59,85)(60,84)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,75)(70,74)(71,73) );`

`G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143)], [(1,143),(2,142),(3,141),(4,140),(5,139),(6,138),(7,137),(8,136),(9,135),(10,134),(11,133),(12,132),(13,131),(14,130),(15,129),(16,128),(17,127),(18,126),(19,125),(20,124),(21,123),(22,122),(23,121),(24,120),(25,119),(26,118),(27,117),(28,116),(29,115),(30,114),(31,113),(32,112),(33,111),(34,110),(35,109),(36,108),(37,107),(38,106),(39,105),(40,104),(41,103),(42,102),(43,101),(44,100),(45,99),(46,98),(47,97),(48,96),(49,95),(50,94),(51,93),(52,92),(53,91),(54,90),(55,89),(56,88),(57,87),(58,86),(59,85),(60,84),(61,83),(62,82),(63,81),(64,80),(65,79),(66,78),(67,77),(68,76),(69,75),(70,74),(71,73)]])`

73 conjugacy classes

 class 1 2 11A ··· 11E 13A ··· 13F 143A ··· 143BH order 1 2 11 ··· 11 13 ··· 13 143 ··· 143 size 1 143 2 ··· 2 2 ··· 2 2 ··· 2

73 irreducible representations

 dim 1 1 2 2 2 type + + + + + image C1 C2 D11 D13 D143 kernel D143 C143 C13 C11 C1 # reps 1 1 5 6 60

Matrix representation of D143 in GL2(𝔽859) generated by

 276 27 832 209
,
 276 27 392 583
`G:=sub<GL(2,GF(859))| [276,832,27,209],[276,392,27,583] >;`

D143 in GAP, Magma, Sage, TeX

`D_{143}`
`% in TeX`

`G:=Group("D143");`
`// GroupNames label`

`G:=SmallGroup(286,3);`
`// by ID`

`G=gap.SmallGroup(286,3);`
`# by ID`

`G:=PCGroup([3,-2,-11,-13,121,2378]);`
`// Polycyclic`

`G:=Group<a,b|a^143=b^2=1,b*a*b=a^-1>;`
`// generators/relations`

Export

׿
×
𝔽