Extensions 1→N→G→Q→1 with N=C2×C34 and Q=C4

Direct product G=N×Q with N=C2×C34 and Q=C4
dρLabelID
C22×C68272C2^2xC68272,46

Semidirect products G=N:Q with N=C2×C34 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C34)⋊1C4 = D17.D4φ: C4/C1C4 ⊆ Aut C2×C34684+(C2xC34):1C4272,35
(C2×C34)⋊2C4 = C22×C17⋊C4φ: C4/C1C4 ⊆ Aut C2×C3468(C2xC34):2C4272,52
(C2×C34)⋊3C4 = C22⋊C4×C17φ: C4/C2C2 ⊆ Aut C2×C34136(C2xC34):3C4272,21
(C2×C34)⋊4C4 = C23.D17φ: C4/C2C2 ⊆ Aut C2×C34136(C2xC34):4C4272,19
(C2×C34)⋊5C4 = C22×Dic17φ: C4/C2C2 ⊆ Aut C2×C34272(C2xC34):5C4272,44

Non-split extensions G=N.Q with N=C2×C34 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C34).1C4 = C2×C172C8φ: C4/C1C4 ⊆ Aut C2×C34272(C2xC34).1C4272,33
(C2×C34).2C4 = C17⋊M4(2)φ: C4/C1C4 ⊆ Aut C2×C341364-(C2xC34).2C4272,34
(C2×C34).3C4 = M4(2)×C17φ: C4/C2C2 ⊆ Aut C2×C341362(C2xC34).3C4272,24
(C2×C34).4C4 = C2×C173C8φ: C4/C2C2 ⊆ Aut C2×C34272(C2xC34).4C4272,9
(C2×C34).5C4 = C68.4C4φ: C4/C2C2 ⊆ Aut C2×C341362(C2xC34).5C4272,10

׿
×
𝔽