Copied to
clipboard

G = D17.D4order 272 = 24·17

The non-split extension by D17 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D342C4, D17.2D4, D34.6C22, (C2×C34)⋊1C4, C17⋊(C22⋊C4), C22⋊(C17⋊C4), C34.7(C2×C4), (C22×D17).2C2, (C2×C17⋊C4)⋊C2, C2.7(C2×C17⋊C4), SmallGroup(272,35)

Series: Derived Chief Lower central Upper central

C1C34 — D17.D4
C1C17D17D34C2×C17⋊C4 — D17.D4
C17C34 — D17.D4
C1C2C22

Generators and relations for D17.D4
 G = < a,b,c,d | a17=b2=c4=1, d2=a-1b, bab=a-1, cac-1=dad-1=a4, cbc-1=dbd-1=a3b, dcd-1=a-1bc-1 >

2C2
17C2
17C2
34C2
17C22
17C22
34C4
34C4
34C22
34C22
2D17
2C34
17C23
17C2×C4
17C2×C4
2C17⋊C4
2D34
2D34
2C17⋊C4
17C22⋊C4

Character table of D17.D4

 class 12A2B2C2D2E4A4B4C4D17A17B17C17D34A34B34C34D34E34F34G34H34I34J34K34L
 size 112171734343434344444444444444444
ρ111111111111111111111111111    trivial
ρ211-111-1-11-1111111-1-1-1-1-1-1-1111-1    linear of order 2
ρ311-111-11-11-111111-1-1-1-1-1-1-1111-1    linear of order 2
ρ4111111-1-1-1-11111111111111111    linear of order 2
ρ5111-1-1-1ii-i-i1111111111111111    linear of order 4
ρ611-1-1-11-iii-i11111-1-1-1-1-1-1-1111-1    linear of order 4
ρ711-1-1-11i-i-ii11111-1-1-1-1-1-1-1111-1    linear of order 4
ρ8111-1-1-1-i-iii1111111111111111    linear of order 4
ρ92-202-2000002222-20000000-2-2-20    orthogonal lifted from D4
ρ102-20-22000002222-20000000-2-2-20    orthogonal lifted from D4
ρ114-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ171417121751731716171317417171517917817217141712175173ζ1715179178172ζ1716171317417171617131741717111710177176ζ1714171217517317141712175173171117101771761715179178172ζ17111710177176    orthogonal faithful
ρ124-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ1711171017717617151791781721716171317417ζ17111710177176ζ17161713174171715179178172ζ1715179178172171417121751731711171017717617111710177176171417121751731716171317417ζ17141712175173    orthogonal faithful
ρ134-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ171517917817217141712175173ζ1711171017717617151791781721711171017717617141712175173ζ17141712175173ζ1716171317417ζ171517917817217151791781721716171317417171117101771761716171317417    orthogonal faithful
ρ1444-40000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ17151791781721716171317417171117101771761716171317417171517917817217151791781721714171217517317111710177176ζ17111710177176ζ17141712175173ζ171617131741717141712175173    orthogonal lifted from C2×C17⋊C4
ρ154440000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ17111710177176ζ17141712175173ζ1716171317417ζ17141712175173ζ17111710177176ζ17111710177176ζ1715179178172ζ1716171317417ζ1716171317417ζ1715179178172ζ17141712175173ζ1715179178172    orthogonal lifted from C17⋊C4
ρ1644-40000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ17161713174171715179178172171417121751731715179178172171617131741717161713174171711171017717617141712175173ζ17141712175173ζ17111710177176ζ171517917817217111710177176    orthogonal lifted from C2×C17⋊C4
ρ174440000000ζ17141712175173ζ1716171317417ζ1715179178172ζ17111710177176ζ1715179178172ζ1716171317417ζ17111710177176ζ1716171317417ζ1715179178172ζ1715179178172ζ17141712175173ζ17111710177176ζ17111710177176ζ17141712175173ζ1716171317417ζ17141712175173    orthogonal lifted from C17⋊C4
ρ1844-40000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ1714171217517317111710177176171517917817217111710177176171417121751731714171217517317161713174171715179178172ζ1715179178172ζ1716171317417ζ171117101771761716171317417    orthogonal lifted from C2×C17⋊C4
ρ194440000000ζ17111710177176ζ1715179178172ζ1716171317417ζ17141712175173ζ1716171317417ζ1715179178172ζ17141712175173ζ1715179178172ζ1716171317417ζ1716171317417ζ17111710177176ζ17141712175173ζ17141712175173ζ17111710177176ζ1715179178172ζ17111710177176    orthogonal lifted from C17⋊C4
ρ2044-40000000ζ1715179178172ζ17141712175173ζ17111710177176ζ1716171317417ζ1711171017717617141712175173171617131741717141712175173171117101771761711171017717617151791781721716171317417ζ1716171317417ζ1715179178172ζ171417121751731715179178172    orthogonal lifted from C2×C17⋊C4
ρ214-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ17161713174171711171017717617141712175173ζ1716171317417ζ1714171217517317111710177176ζ17111710177176ζ1715179178172171617131741717161713174171715179178172171417121751731715179178172    orthogonal faithful
ρ224-400000000ζ1715179178172ζ17141712175173ζ17111710177176ζ171617131741717111710177176ζ17141712175173171617131741717141712175173ζ17111710177176171117101771761715179178172ζ17161713174171716171317417171517917817217141712175173ζ1715179178172    orthogonal faithful
ρ234-400000000ζ1716171317417ζ17111710177176ζ17141712175173ζ17151791781721714171217517317111710177176ζ1715179178172ζ17111710177176ζ1714171217517317141712175173171617131741717151791781721715179178172171617131741717111710177176ζ1716171317417    orthogonal faithful
ρ244-400000000ζ17111710177176ζ1715179178172ζ1716171317417ζ171417121751731716171317417ζ1715179178172ζ1714171217517317151791781721716171317417ζ1716171317417ζ17111710177176171417121751731714171217517317111710177176171517917817217111710177176    orthogonal faithful
ρ254440000000ζ1716171317417ζ17111710177176ζ17141712175173ζ1715179178172ζ17141712175173ζ17111710177176ζ1715179178172ζ17111710177176ζ17141712175173ζ17141712175173ζ1716171317417ζ1715179178172ζ1715179178172ζ1716171317417ζ17111710177176ζ1716171317417    orthogonal lifted from C17⋊C4
ρ264-400000000ζ17141712175173ζ1716171317417ζ1715179178172ζ171117101771761715179178172ζ1716171317417171117101771761716171317417ζ17151791781721715179178172ζ17141712175173ζ171117101771761711171017717617141712175173171617131741717141712175173    orthogonal faithful

Smallest permutation representation of D17.D4
On 68 points
Generators in S68
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 34)(13 33)(14 32)(15 31)(16 30)(17 29)(35 67)(36 66)(37 65)(38 64)(39 63)(40 62)(41 61)(42 60)(43 59)(44 58)(45 57)(46 56)(47 55)(48 54)(49 53)(50 52)(51 68)
(1 44)(2 40 17 48)(3 36 16 35)(4 49 15 39)(5 45 14 43)(6 41 13 47)(7 37 12 51)(8 50 11 38)(9 46 10 42)(18 52 23 66)(19 65 22 53)(20 61 21 57)(24 62 34 56)(25 58 33 60)(26 54 32 64)(27 67 31 68)(28 63 30 55)(29 59)
(1 59 29 44)(2 55 28 48)(3 68 27 35)(4 64 26 39)(5 60 25 43)(6 56 24 47)(7 52 23 51)(8 65 22 38)(9 61 21 42)(10 57 20 46)(11 53 19 50)(12 66 18 37)(13 62 34 41)(14 58 33 45)(15 54 32 49)(16 67 31 36)(17 63 30 40)

G:=sub<Sym(68)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,61)(42,60)(43,59)(44,58)(45,57)(46,56)(47,55)(48,54)(49,53)(50,52)(51,68), (1,44)(2,40,17,48)(3,36,16,35)(4,49,15,39)(5,45,14,43)(6,41,13,47)(7,37,12,51)(8,50,11,38)(9,46,10,42)(18,52,23,66)(19,65,22,53)(20,61,21,57)(24,62,34,56)(25,58,33,60)(26,54,32,64)(27,67,31,68)(28,63,30,55)(29,59), (1,59,29,44)(2,55,28,48)(3,68,27,35)(4,64,26,39)(5,60,25,43)(6,56,24,47)(7,52,23,51)(8,65,22,38)(9,61,21,42)(10,57,20,46)(11,53,19,50)(12,66,18,37)(13,62,34,41)(14,58,33,45)(15,54,32,49)(16,67,31,36)(17,63,30,40)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,34)(13,33)(14,32)(15,31)(16,30)(17,29)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,61)(42,60)(43,59)(44,58)(45,57)(46,56)(47,55)(48,54)(49,53)(50,52)(51,68), (1,44)(2,40,17,48)(3,36,16,35)(4,49,15,39)(5,45,14,43)(6,41,13,47)(7,37,12,51)(8,50,11,38)(9,46,10,42)(18,52,23,66)(19,65,22,53)(20,61,21,57)(24,62,34,56)(25,58,33,60)(26,54,32,64)(27,67,31,68)(28,63,30,55)(29,59), (1,59,29,44)(2,55,28,48)(3,68,27,35)(4,64,26,39)(5,60,25,43)(6,56,24,47)(7,52,23,51)(8,65,22,38)(9,61,21,42)(10,57,20,46)(11,53,19,50)(12,66,18,37)(13,62,34,41)(14,58,33,45)(15,54,32,49)(16,67,31,36)(17,63,30,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,34),(13,33),(14,32),(15,31),(16,30),(17,29),(35,67),(36,66),(37,65),(38,64),(39,63),(40,62),(41,61),(42,60),(43,59),(44,58),(45,57),(46,56),(47,55),(48,54),(49,53),(50,52),(51,68)], [(1,44),(2,40,17,48),(3,36,16,35),(4,49,15,39),(5,45,14,43),(6,41,13,47),(7,37,12,51),(8,50,11,38),(9,46,10,42),(18,52,23,66),(19,65,22,53),(20,61,21,57),(24,62,34,56),(25,58,33,60),(26,54,32,64),(27,67,31,68),(28,63,30,55),(29,59)], [(1,59,29,44),(2,55,28,48),(3,68,27,35),(4,64,26,39),(5,60,25,43),(6,56,24,47),(7,52,23,51),(8,65,22,38),(9,61,21,42),(10,57,20,46),(11,53,19,50),(12,66,18,37),(13,62,34,41),(14,58,33,45),(15,54,32,49),(16,67,31,36),(17,63,30,40)]])

Matrix representation of D17.D4 in GL6(𝔽137)

100000
010000
00103100
0056010
00111001
001175710686
,
100000
010000
00107121012
00594385122
00964411480
0038632210
,
320000
1321340000
00108938171
001342811156
0063860136
001111161051
,
1341350000
430000
00108938171
001342811156
0063860136
001111161051

G:=sub<GL(6,GF(137))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,103,56,111,117,0,0,1,0,0,57,0,0,0,1,0,106,0,0,0,0,1,86],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,107,59,96,38,0,0,121,43,44,63,0,0,0,85,114,22,0,0,12,122,80,10],[3,132,0,0,0,0,2,134,0,0,0,0,0,0,108,134,63,111,0,0,93,28,86,116,0,0,81,111,0,105,0,0,71,56,136,1],[134,4,0,0,0,0,135,3,0,0,0,0,0,0,108,134,63,111,0,0,93,28,86,116,0,0,81,111,0,105,0,0,71,56,136,1] >;

D17.D4 in GAP, Magma, Sage, TeX

D_{17}.D_4
% in TeX

G:=Group("D17.D4");
// GroupNames label

G:=SmallGroup(272,35);
// by ID

G=gap.SmallGroup(272,35);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,101,5204,1614]);
// Polycyclic

G:=Group<a,b,c,d|a^17=b^2=c^4=1,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^4,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=a^-1*b*c^-1>;
// generators/relations

Export

Subgroup lattice of D17.D4 in TeX
Character table of D17.D4 in TeX

׿
×
𝔽