Extensions 1→N→G→Q→1 with N=C3 and Q=C4⋊C47S3

Direct product G=N×Q with N=C3 and Q=C4⋊C47S3
dρLabelID
C3×C4⋊C47S396C3xC4:C4:7S3288,663

Semidirect products G=N:Q with N=C3 and Q=C4⋊C47S3
extensionφ:Q→Aut NdρLabelID
C31(C4⋊C47S3) = C62.6C23φ: C4⋊C47S3/C4×Dic3C2 ⊆ Aut C348C3:1(C4:C4:7S3)288,484
C32(C4⋊C47S3) = C62.19C23φ: C4⋊C47S3/C4⋊Dic3C2 ⊆ Aut C348C3:2(C4:C4:7S3)288,497
C33(C4⋊C47S3) = C62.48C23φ: C4⋊C47S3/D6⋊C4C2 ⊆ Aut C396C3:3(C4:C4:7S3)288,526
C34(C4⋊C47S3) = C62.236C23φ: C4⋊C47S3/C3×C4⋊C4C2 ⊆ Aut C3144C3:4(C4:C4:7S3)288,749
C35(C4⋊C47S3) = C62.11C23φ: C4⋊C47S3/S3×C2×C4C2 ⊆ Aut C396C3:5(C4:C4:7S3)288,489

Non-split extensions G=N.Q with N=C3 and Q=C4⋊C47S3
extensionφ:Q→Aut NdρLabelID
C3.(C4⋊C47S3) = C4⋊C47D9φ: C4⋊C47S3/C3×C4⋊C4C2 ⊆ Aut C3144C3.(C4:C4:7S3)288,102

׿
×
𝔽