Extensions 1→N→G→Q→1 with N=C3 and Q=Dic35D4

Direct product G=N×Q with N=C3 and Q=Dic35D4
dρLabelID
C3×Dic35D496C3xDic3:5D4288,664

Semidirect products G=N:Q with N=C3 and Q=Dic35D4
extensionφ:Q→Aut NdρLabelID
C31(Dic35D4) = Dic35D12φ: Dic35D4/C4×Dic3C2 ⊆ Aut C348C3:1(Dic3:5D4)288,542
C32(Dic35D4) = C62.51C23φ: Dic35D4/D6⋊C4C2 ⊆ Aut C348C3:2(Dic3:5D4)288,529
C33(Dic35D4) = C62.237C23φ: Dic35D4/C3×C4⋊C4C2 ⊆ Aut C3144C3:3(Dic3:5D4)288,750
C34(Dic35D4) = C62.74C23φ: Dic35D4/S3×C2×C4C2 ⊆ Aut C348C3:4(Dic3:5D4)288,552
C35(Dic35D4) = D12⋊Dic3φ: Dic35D4/C2×D12C2 ⊆ Aut C396C3:5(Dic3:5D4)288,546

Non-split extensions G=N.Q with N=C3 and Q=Dic35D4
extensionφ:Q→Aut NdρLabelID
C3.(Dic35D4) = D36⋊C4φ: Dic35D4/C3×C4⋊C4C2 ⊆ Aut C3144C3.(Dic3:5D4)288,103

׿
×
𝔽