metabelian, supersoluble, monomial
Aliases: Dic3⋊5D12, C62.64C23, C12⋊6(C4×S3), C3⋊1(C4×D12), C32⋊6(C4×D4), C2.4(S3×D12), C6.18(S3×D4), C4⋊Dic3⋊17S3, (C3×Dic3)⋊9D4, (C4×Dic3)⋊6S3, C6.19(C2×D12), C12⋊S3⋊10C4, (C2×C12).281D6, C4⋊1(C6.D6), C3⋊1(Dic3⋊5D4), (Dic3×C12)⋊11C2, C6.12(C4○D12), (C2×Dic3).71D6, C6.D12⋊13C2, (C6×C12).102C22, C6.13(Q8⋊3S3), C2.4(D6.6D6), (C6×Dic3).64C22, (C2×C4).80S32, C6.33(S3×C2×C4), (C3×C12)⋊6(C2×C4), C22.36(C2×S32), (C3×C6).51(C2×D4), (C3×C4⋊Dic3)⋊13C2, (C2×C6.D6)⋊9C2, (C3×C6).38(C4○D4), (C3×C6).57(C22×C4), (C2×C6).83(C22×S3), C2.10(C2×C6.D6), (C2×C12⋊S3).13C2, (C22×C3⋊S3).17C22, (C2×C3⋊S3)⋊2(C2×C4), SmallGroup(288,542)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic3⋊5D12
G = < a,b,c,d | a6=c12=d2=1, b2=a3, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c-1 >
Subgroups: 962 in 215 conjugacy classes, 64 normal (34 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C4×D4, C3×Dic3, C3×Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C4×Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, S3×C2×C4, C2×D12, C6.D6, C6×Dic3, C6×Dic3, C12⋊S3, C6×C12, C22×C3⋊S3, C4×D12, Dic3⋊5D4, C6.D12, Dic3×C12, C3×C4⋊Dic3, C2×C6.D6, C2×C12⋊S3, Dic3⋊5D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C4×S3, D12, C22×S3, C4×D4, S32, S3×C2×C4, C2×D12, C4○D12, S3×D4, Q8⋊3S3, C6.D6, C2×S32, C4×D12, Dic3⋊5D4, D6.6D6, S3×D12, C2×C6.D6, Dic3⋊5D12
(1 24 9 20 5 16)(2 13 10 21 6 17)(3 14 11 22 7 18)(4 15 12 23 8 19)(25 47 29 39 33 43)(26 48 30 40 34 44)(27 37 31 41 35 45)(28 38 32 42 36 46)
(1 29 20 43)(2 30 21 44)(3 31 22 45)(4 32 23 46)(5 33 24 47)(6 34 13 48)(7 35 14 37)(8 36 15 38)(9 25 16 39)(10 26 17 40)(11 27 18 41)(12 28 19 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 6)(10 12)(13 23)(14 22)(15 21)(16 20)(17 19)(25 29)(26 28)(30 36)(31 35)(32 34)(37 45)(38 44)(39 43)(40 42)(46 48)
G:=sub<Sym(48)| (1,24,9,20,5,16)(2,13,10,21,6,17)(3,14,11,22,7,18)(4,15,12,23,8,19)(25,47,29,39,33,43)(26,48,30,40,34,44)(27,37,31,41,35,45)(28,38,32,42,36,46), (1,29,20,43)(2,30,21,44)(3,31,22,45)(4,32,23,46)(5,33,24,47)(6,34,13,48)(7,35,14,37)(8,36,15,38)(9,25,16,39)(10,26,17,40)(11,27,18,41)(12,28,19,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,6)(10,12)(13,23)(14,22)(15,21)(16,20)(17,19)(25,29)(26,28)(30,36)(31,35)(32,34)(37,45)(38,44)(39,43)(40,42)(46,48)>;
G:=Group( (1,24,9,20,5,16)(2,13,10,21,6,17)(3,14,11,22,7,18)(4,15,12,23,8,19)(25,47,29,39,33,43)(26,48,30,40,34,44)(27,37,31,41,35,45)(28,38,32,42,36,46), (1,29,20,43)(2,30,21,44)(3,31,22,45)(4,32,23,46)(5,33,24,47)(6,34,13,48)(7,35,14,37)(8,36,15,38)(9,25,16,39)(10,26,17,40)(11,27,18,41)(12,28,19,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,6)(10,12)(13,23)(14,22)(15,21)(16,20)(17,19)(25,29)(26,28)(30,36)(31,35)(32,34)(37,45)(38,44)(39,43)(40,42)(46,48) );
G=PermutationGroup([[(1,24,9,20,5,16),(2,13,10,21,6,17),(3,14,11,22,7,18),(4,15,12,23,8,19),(25,47,29,39,33,43),(26,48,30,40,34,44),(27,37,31,41,35,45),(28,38,32,42,36,46)], [(1,29,20,43),(2,30,21,44),(3,31,22,45),(4,32,23,46),(5,33,24,47),(6,34,13,48),(7,35,14,37),(8,36,15,38),(9,25,16,39),(10,26,17,40),(11,27,18,41),(12,28,19,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,6),(10,12),(13,23),(14,22),(15,21),(16,20),(17,19),(25,29),(26,28),(30,36),(31,35),(32,34),(37,45),(38,44),(39,43),(40,42),(46,48)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4L | 6A | ··· | 6F | 6G | 6H | 6I | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | ··· | 12R | 12S | 12T | 12U | 12V |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 18 | 18 | 18 | 18 | 2 | 2 | 4 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | D6 | D6 | C4○D4 | D12 | C4×S3 | C4○D12 | S32 | S3×D4 | Q8⋊3S3 | C6.D6 | C2×S32 | D6.6D6 | S3×D12 |
kernel | Dic3⋊5D12 | C6.D12 | Dic3×C12 | C3×C4⋊Dic3 | C2×C6.D6 | C2×C12⋊S3 | C12⋊S3 | C4×Dic3 | C4⋊Dic3 | C3×Dic3 | C2×Dic3 | C2×C12 | C3×C6 | Dic3 | C12 | C6 | C2×C4 | C6 | C6 | C4 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 8 | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 8 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 2 |
Matrix representation of Dic3⋊5D12 ►in GL6(𝔽13)
0 | 1 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 5 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 3 | 0 | 0 |
0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 7 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,5,0,0,0,0,5,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,3,0,0,0,0,3,4,0,0,0,0,0,0,0,1,0,0,0,0,12,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,7,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1] >;
Dic3⋊5D12 in GAP, Magma, Sage, TeX
{\rm Dic}_3\rtimes_5D_{12}
% in TeX
G:=Group("Dic3:5D12");
// GroupNames label
G:=SmallGroup(288,542);
// by ID
G=gap.SmallGroup(288,542);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,64,219,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=c^12=d^2=1,b^2=a^3,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations