Extensions 1→N→G→Q→1 with N=C2×D4 and Q=D9

Direct product G=N×Q with N=C2×D4 and Q=D9
dρLabelID
C2×D4×D972C2xD4xD9288,356

Semidirect products G=N:Q with N=C2×D4 and Q=D9
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1D9 = C2×D4⋊D9φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4):1D9288,142
(C2×D4)⋊2D9 = D366C22φ: D9/C9C2 ⊆ Out C2×D4724(C2xD4):2D9288,143
(C2×D4)⋊3D9 = C232D18φ: D9/C9C2 ⊆ Out C2×D472(C2xD4):3D9288,147
(C2×D4)⋊4D9 = C362D4φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4):4D9288,148
(C2×D4)⋊5D9 = Dic9⋊D4φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4):5D9288,149
(C2×D4)⋊6D9 = C36⋊D4φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4):6D9288,150
(C2×D4)⋊7D9 = D46D18φ: D9/C9C2 ⊆ Out C2×D4724(C2xD4):7D9288,358
(C2×D4)⋊8D9 = C2×D42D9φ: trivial image144(C2xD4):8D9288,357

Non-split extensions G=N.Q with N=C2×D4 and Q=D9
extensionφ:Q→Out NdρLabelID
(C2×D4).1D9 = C36.D4φ: D9/C9C2 ⊆ Out C2×D4724(C2xD4).1D9288,39
(C2×D4).2D9 = D4⋊Dic9φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4).2D9288,40
(C2×D4).3D9 = C232Dic9φ: D9/C9C2 ⊆ Out C2×D4724(C2xD4).3D9288,41
(C2×D4).4D9 = C2×D4.D9φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4).4D9288,141
(C2×D4).5D9 = C23.23D18φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4).5D9288,145
(C2×D4).6D9 = C36.17D4φ: D9/C9C2 ⊆ Out C2×D4144(C2xD4).6D9288,146
(C2×D4).7D9 = D4×Dic9φ: trivial image144(C2xD4).7D9288,144

׿
×
𝔽