Copied to
clipboard

G = C2×D4⋊D9order 288 = 25·32

Direct product of C2 and D4⋊D9

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4⋊D9, C182D8, D43D18, C36.15D4, D365C22, C36.12C23, C93(C2×D8), (C2×D4)⋊1D9, C9⋊C88C22, (C2×D36)⋊8C2, (D4×C18)⋊1C2, (C6×D4).4S3, (C3×D4).30D6, (C2×C4).49D18, C18.46(C2×D4), (C2×C18).39D4, (C2×C12).56D6, (D4×C9)⋊3C22, C4.6(C9⋊D4), C6.20(D4⋊S3), C4.12(C22×D9), C12.10(C3⋊D4), (C2×C36).34C22, C12.51(C22×S3), C22.22(C9⋊D4), (C2×C9⋊C8)⋊5C2, C3.(C2×D4⋊S3), C2.9(C2×C9⋊D4), C6.93(C2×C3⋊D4), (C2×C6).78(C3⋊D4), SmallGroup(288,142)

Series: Derived Chief Lower central Upper central

C1C36 — C2×D4⋊D9
C1C3C9C18C36D36C2×D36 — C2×D4⋊D9
C9C18C36 — C2×D4⋊D9
C1C22C2×C4C2×D4

Generators and relations for C2×D4⋊D9
 G = < a,b,c,d,e | a2=b4=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

Subgroups: 560 in 114 conjugacy classes, 44 normal (24 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C22, C22 [×8], S3 [×2], C6, C6 [×2], C6 [×2], C8 [×2], C2×C4, D4 [×2], D4 [×4], C23 [×2], C9, C12 [×2], D6 [×4], C2×C6, C2×C6 [×4], C2×C8, D8 [×4], C2×D4, C2×D4, D9 [×2], C18, C18 [×2], C18 [×2], C3⋊C8 [×2], D12 [×3], C2×C12, C3×D4 [×2], C3×D4, C22×S3, C22×C6, C2×D8, C36 [×2], D18 [×4], C2×C18, C2×C18 [×4], C2×C3⋊C8, D4⋊S3 [×4], C2×D12, C6×D4, C9⋊C8 [×2], D36 [×2], D36, C2×C36, D4×C9 [×2], D4×C9, C22×D9, C22×C18, C2×D4⋊S3, C2×C9⋊C8, D4⋊D9 [×4], C2×D36, D4×C18, C2×D4⋊D9
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×2], C23, D6 [×3], D8 [×2], C2×D4, D9, C3⋊D4 [×2], C22×S3, C2×D8, D18 [×3], D4⋊S3 [×2], C2×C3⋊D4, C9⋊D4 [×2], C22×D9, C2×D4⋊S3, D4⋊D9 [×2], C2×C9⋊D4, C2×D4⋊D9

Smallest permutation representation of C2×D4⋊D9
On 144 points
Generators in S144
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 94)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 109)(38 110)(39 111)(40 112)(41 113)(42 114)(43 115)(44 116)(45 117)(46 118)(47 119)(48 120)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 133)(62 134)(63 135)(64 136)(65 137)(66 138)(67 139)(68 140)(69 141)(70 142)(71 143)(72 144)
(1 28 10 19)(2 29 11 20)(3 30 12 21)(4 31 13 22)(5 32 14 23)(6 33 15 24)(7 34 16 25)(8 35 17 26)(9 36 18 27)(37 55 46 64)(38 56 47 65)(39 57 48 66)(40 58 49 67)(41 59 50 68)(42 60 51 69)(43 61 52 70)(44 62 53 71)(45 63 54 72)(73 100 82 91)(74 101 83 92)(75 102 84 93)(76 103 85 94)(77 104 86 95)(78 105 87 96)(79 106 88 97)(80 107 89 98)(81 108 90 99)(109 127 118 136)(110 128 119 137)(111 129 120 138)(112 130 121 139)(113 131 122 140)(114 132 123 141)(115 133 124 142)(116 134 125 143)(117 135 126 144)
(1 136)(2 137)(3 138)(4 139)(5 140)(6 141)(7 142)(8 143)(9 144)(10 127)(11 128)(12 129)(13 130)(14 131)(15 132)(16 133)(17 134)(18 135)(19 109)(20 110)(21 111)(22 112)(23 113)(24 114)(25 115)(26 116)(27 117)(28 118)(29 119)(30 120)(31 121)(32 122)(33 123)(34 124)(35 125)(36 126)(37 91)(38 92)(39 93)(40 94)(41 95)(42 96)(43 97)(44 98)(45 99)(46 100)(47 101)(48 102)(49 103)(50 104)(51 105)(52 106)(53 107)(54 108)(55 82)(56 83)(57 84)(58 85)(59 86)(60 87)(61 88)(62 89)(63 90)(64 73)(65 74)(66 75)(67 76)(68 77)(69 78)(70 79)(71 80)(72 81)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 81)(2 80)(3 79)(4 78)(5 77)(6 76)(7 75)(8 74)(9 73)(10 90)(11 89)(12 88)(13 87)(14 86)(15 85)(16 84)(17 83)(18 82)(19 108)(20 107)(21 106)(22 105)(23 104)(24 103)(25 102)(26 101)(27 100)(28 99)(29 98)(30 97)(31 96)(32 95)(33 94)(34 93)(35 92)(36 91)(37 135)(38 134)(39 133)(40 132)(41 131)(42 130)(43 129)(44 128)(45 127)(46 144)(47 143)(48 142)(49 141)(50 140)(51 139)(52 138)(53 137)(54 136)(55 117)(56 116)(57 115)(58 114)(59 113)(60 112)(61 111)(62 110)(63 109)(64 126)(65 125)(66 124)(67 123)(68 122)(69 121)(70 120)(71 119)(72 118)

G:=sub<Sym(144)| (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144), (1,28,10,19)(2,29,11,20)(3,30,12,21)(4,31,13,22)(5,32,14,23)(6,33,15,24)(7,34,16,25)(8,35,17,26)(9,36,18,27)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72)(73,100,82,91)(74,101,83,92)(75,102,84,93)(76,103,85,94)(77,104,86,95)(78,105,87,96)(79,106,88,97)(80,107,89,98)(81,108,90,99)(109,127,118,136)(110,128,119,137)(111,129,120,138)(112,130,121,139)(113,131,122,140)(114,132,123,141)(115,133,124,142)(116,134,125,143)(117,135,126,144), (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,127)(11,128)(12,129)(13,130)(14,131)(15,132)(16,133)(17,134)(18,135)(19,109)(20,110)(21,111)(22,112)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,103)(50,104)(51,105)(52,106)(53,107)(54,108)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,73)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,81)(2,80)(3,79)(4,78)(5,77)(6,76)(7,75)(8,74)(9,73)(10,90)(11,89)(12,88)(13,87)(14,86)(15,85)(16,84)(17,83)(18,82)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,100)(28,99)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,135)(38,134)(39,133)(40,132)(41,131)(42,130)(43,129)(44,128)(45,127)(46,144)(47,143)(48,142)(49,141)(50,140)(51,139)(52,138)(53,137)(54,136)(55,117)(56,116)(57,115)(58,114)(59,113)(60,112)(61,111)(62,110)(63,109)(64,126)(65,125)(66,124)(67,123)(68,122)(69,121)(70,120)(71,119)(72,118)>;

G:=Group( (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,94)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,111)(40,112)(41,113)(42,114)(43,115)(44,116)(45,117)(46,118)(47,119)(48,120)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,133)(62,134)(63,135)(64,136)(65,137)(66,138)(67,139)(68,140)(69,141)(70,142)(71,143)(72,144), (1,28,10,19)(2,29,11,20)(3,30,12,21)(4,31,13,22)(5,32,14,23)(6,33,15,24)(7,34,16,25)(8,35,17,26)(9,36,18,27)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72)(73,100,82,91)(74,101,83,92)(75,102,84,93)(76,103,85,94)(77,104,86,95)(78,105,87,96)(79,106,88,97)(80,107,89,98)(81,108,90,99)(109,127,118,136)(110,128,119,137)(111,129,120,138)(112,130,121,139)(113,131,122,140)(114,132,123,141)(115,133,124,142)(116,134,125,143)(117,135,126,144), (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,127)(11,128)(12,129)(13,130)(14,131)(15,132)(16,133)(17,134)(18,135)(19,109)(20,110)(21,111)(22,112)(23,113)(24,114)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,126)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,103)(50,104)(51,105)(52,106)(53,107)(54,108)(55,82)(56,83)(57,84)(58,85)(59,86)(60,87)(61,88)(62,89)(63,90)(64,73)(65,74)(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,81)(2,80)(3,79)(4,78)(5,77)(6,76)(7,75)(8,74)(9,73)(10,90)(11,89)(12,88)(13,87)(14,86)(15,85)(16,84)(17,83)(18,82)(19,108)(20,107)(21,106)(22,105)(23,104)(24,103)(25,102)(26,101)(27,100)(28,99)(29,98)(30,97)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,135)(38,134)(39,133)(40,132)(41,131)(42,130)(43,129)(44,128)(45,127)(46,144)(47,143)(48,142)(49,141)(50,140)(51,139)(52,138)(53,137)(54,136)(55,117)(56,116)(57,115)(58,114)(59,113)(60,112)(61,111)(62,110)(63,109)(64,126)(65,125)(66,124)(67,123)(68,122)(69,121)(70,120)(71,119)(72,118) );

G=PermutationGroup([(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,94),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,109),(38,110),(39,111),(40,112),(41,113),(42,114),(43,115),(44,116),(45,117),(46,118),(47,119),(48,120),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,133),(62,134),(63,135),(64,136),(65,137),(66,138),(67,139),(68,140),(69,141),(70,142),(71,143),(72,144)], [(1,28,10,19),(2,29,11,20),(3,30,12,21),(4,31,13,22),(5,32,14,23),(6,33,15,24),(7,34,16,25),(8,35,17,26),(9,36,18,27),(37,55,46,64),(38,56,47,65),(39,57,48,66),(40,58,49,67),(41,59,50,68),(42,60,51,69),(43,61,52,70),(44,62,53,71),(45,63,54,72),(73,100,82,91),(74,101,83,92),(75,102,84,93),(76,103,85,94),(77,104,86,95),(78,105,87,96),(79,106,88,97),(80,107,89,98),(81,108,90,99),(109,127,118,136),(110,128,119,137),(111,129,120,138),(112,130,121,139),(113,131,122,140),(114,132,123,141),(115,133,124,142),(116,134,125,143),(117,135,126,144)], [(1,136),(2,137),(3,138),(4,139),(5,140),(6,141),(7,142),(8,143),(9,144),(10,127),(11,128),(12,129),(13,130),(14,131),(15,132),(16,133),(17,134),(18,135),(19,109),(20,110),(21,111),(22,112),(23,113),(24,114),(25,115),(26,116),(27,117),(28,118),(29,119),(30,120),(31,121),(32,122),(33,123),(34,124),(35,125),(36,126),(37,91),(38,92),(39,93),(40,94),(41,95),(42,96),(43,97),(44,98),(45,99),(46,100),(47,101),(48,102),(49,103),(50,104),(51,105),(52,106),(53,107),(54,108),(55,82),(56,83),(57,84),(58,85),(59,86),(60,87),(61,88),(62,89),(63,90),(64,73),(65,74),(66,75),(67,76),(68,77),(69,78),(70,79),(71,80),(72,81)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,81),(2,80),(3,79),(4,78),(5,77),(6,76),(7,75),(8,74),(9,73),(10,90),(11,89),(12,88),(13,87),(14,86),(15,85),(16,84),(17,83),(18,82),(19,108),(20,107),(21,106),(22,105),(23,104),(24,103),(25,102),(26,101),(27,100),(28,99),(29,98),(30,97),(31,96),(32,95),(33,94),(34,93),(35,92),(36,91),(37,135),(38,134),(39,133),(40,132),(41,131),(42,130),(43,129),(44,128),(45,127),(46,144),(47,143),(48,142),(49,141),(50,140),(51,139),(52,138),(53,137),(54,136),(55,117),(56,116),(57,115),(58,114),(59,113),(60,112),(61,111),(62,110),(63,109),(64,126),(65,125),(66,124),(67,123),(68,122),(69,121),(70,120),(71,119),(72,118)])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C6D6E6F6G8A8B8C8D9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222234466666668888999121218···1818···1836···36
size1111443636222222444418181818222442···24···44···4

54 irreducible representations

dim11111222222222222244
type++++++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D8D9C3⋊D4C3⋊D4D18D18C9⋊D4C9⋊D4D4⋊S3D4⋊D9
kernelC2×D4⋊D9C2×C9⋊C8D4⋊D9C2×D36D4×C18C6×D4C36C2×C18C2×C12C3×D4C18C2×D4C12C2×C6C2×C4D4C4C22C6C2
# reps11411111124322366626

Matrix representation of C2×D4⋊D9 in GL4(𝔽73) generated by

72000
07200
00720
00072
,
72000
07200
00723
00481
,
306000
134300
004148
003832
,
31300
702800
0010
0001
,
427000
283100
00720
00481
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,72,48,0,0,3,1],[30,13,0,0,60,43,0,0,0,0,41,38,0,0,48,32],[31,70,0,0,3,28,0,0,0,0,1,0,0,0,0,1],[42,28,0,0,70,31,0,0,0,0,72,48,0,0,0,1] >;

C2×D4⋊D9 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes D_9
% in TeX

G:=Group("C2xD4:D9");
// GroupNames label

G:=SmallGroup(288,142);
// by ID

G=gap.SmallGroup(288,142);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,675,185,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽