Copied to
clipboard

G = C36.D4order 288 = 25·32

7th non-split extension by C36 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C36.7D4, C23.2Dic9, (C6×D4).1S3, (C2×D4).1D9, (C2×C4).3D18, (D4×C18).1C2, (C2×C12).45D6, C92(C4.D4), C4.Dic93C2, C4.12(C9⋊D4), C12.5(C3⋊D4), (C22×C18).2C4, C3.(C12.D4), (C2×C36).23C22, (C22×C6).6Dic3, C22.2(C2×Dic9), C18.13(C22⋊C4), C2.3(C18.D4), C6.14(C6.D4), (C2×C18).29(C2×C4), (C2×C6).33(C2×Dic3), SmallGroup(288,39)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C36.D4
C1C3C9C18C36C2×C36C4.Dic9 — C36.D4
C9C18C2×C18 — C36.D4
C1C2C2×C4C2×D4

Generators and relations for C36.D4
 G = < a,b,c | a36=1, b4=a18, c2=a9, bab-1=a-1, cac-1=a17, cbc-1=a27b3 >

Subgroups: 196 in 69 conjugacy classes, 30 normal (16 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, D4, C23, C9, C12, C2×C6, C2×C6, M4(2), C2×D4, C18, C18, C3⋊C8, C2×C12, C3×D4, C22×C6, C4.D4, C36, C2×C18, C2×C18, C4.Dic3, C6×D4, C9⋊C8, C2×C36, D4×C9, C22×C18, C12.D4, C4.Dic9, D4×C18, C36.D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, D9, C2×Dic3, C3⋊D4, C4.D4, Dic9, D18, C6.D4, C2×Dic9, C9⋊D4, C12.D4, C18.D4, C36.D4

Smallest permutation representation of C36.D4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 65 10 56 19 47 28 38)(2 64 11 55 20 46 29 37)(3 63 12 54 21 45 30 72)(4 62 13 53 22 44 31 71)(5 61 14 52 23 43 32 70)(6 60 15 51 24 42 33 69)(7 59 16 50 25 41 34 68)(8 58 17 49 26 40 35 67)(9 57 18 48 27 39 36 66)
(1 56 10 65 19 38 28 47)(2 37 11 46 20 55 29 64)(3 54 12 63 21 72 30 45)(4 71 13 44 22 53 31 62)(5 52 14 61 23 70 32 43)(6 69 15 42 24 51 33 60)(7 50 16 59 25 68 34 41)(8 67 17 40 26 49 35 58)(9 48 18 57 27 66 36 39)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,65,10,56,19,47,28,38)(2,64,11,55,20,46,29,37)(3,63,12,54,21,45,30,72)(4,62,13,53,22,44,31,71)(5,61,14,52,23,43,32,70)(6,60,15,51,24,42,33,69)(7,59,16,50,25,41,34,68)(8,58,17,49,26,40,35,67)(9,57,18,48,27,39,36,66), (1,56,10,65,19,38,28,47)(2,37,11,46,20,55,29,64)(3,54,12,63,21,72,30,45)(4,71,13,44,22,53,31,62)(5,52,14,61,23,70,32,43)(6,69,15,42,24,51,33,60)(7,50,16,59,25,68,34,41)(8,67,17,40,26,49,35,58)(9,48,18,57,27,66,36,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,65,10,56,19,47,28,38)(2,64,11,55,20,46,29,37)(3,63,12,54,21,45,30,72)(4,62,13,53,22,44,31,71)(5,61,14,52,23,43,32,70)(6,60,15,51,24,42,33,69)(7,59,16,50,25,41,34,68)(8,58,17,49,26,40,35,67)(9,57,18,48,27,39,36,66), (1,56,10,65,19,38,28,47)(2,37,11,46,20,55,29,64)(3,54,12,63,21,72,30,45)(4,71,13,44,22,53,31,62)(5,52,14,61,23,70,32,43)(6,69,15,42,24,51,33,60)(7,50,16,59,25,68,34,41)(8,67,17,40,26,49,35,58)(9,48,18,57,27,66,36,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,65,10,56,19,47,28,38),(2,64,11,55,20,46,29,37),(3,63,12,54,21,45,30,72),(4,62,13,53,22,44,31,71),(5,61,14,52,23,43,32,70),(6,60,15,51,24,42,33,69),(7,59,16,50,25,41,34,68),(8,58,17,49,26,40,35,67),(9,57,18,48,27,39,36,66)], [(1,56,10,65,19,38,28,47),(2,37,11,46,20,55,29,64),(3,54,12,63,21,72,30,45),(4,71,13,44,22,53,31,62),(5,52,14,61,23,70,32,43),(6,69,15,42,24,51,33,60),(7,50,16,59,25,68,34,41),(8,67,17,40,26,49,35,58),(9,48,18,57,27,66,36,39)]])

51 conjugacy classes

class 1 2A2B2C2D 3 4A4B6A6B6C6D6E6F6G8A8B8C8D9A9B9C12A12B18A···18I18J···18U36A···36F
order1222234466666668888999121218···1818···1836···36
size11244222222444436363636222442···24···44···4

51 irreducible representations

dim1111222222222444
type++++++-++-+
imageC1C2C2C4S3D4D6Dic3D9C3⋊D4D18Dic9C9⋊D4C4.D4C12.D4C36.D4
kernelC36.D4C4.Dic9D4×C18C22×C18C6×D4C36C2×C12C22×C6C2×D4C12C2×C4C23C4C9C3C1
# reps12141212343612126

Matrix representation of C36.D4 in GL4(𝔽73) generated by

553400
111800
271804
5718690
,
10063
00172
440072
01072
,
10630
00721
01720
440720
G:=sub<GL(4,GF(73))| [55,11,27,57,34,18,18,18,0,0,0,69,0,0,4,0],[1,0,44,0,0,0,0,1,0,1,0,0,63,72,72,72],[1,0,0,44,0,0,1,0,63,72,72,72,0,1,0,0] >;

C36.D4 in GAP, Magma, Sage, TeX

C_{36}.D_4
% in TeX

G:=Group("C36.D4");
// GroupNames label

G:=SmallGroup(288,39);
// by ID

G=gap.SmallGroup(288,39);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,219,100,675,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=1,b^4=a^18,c^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^17,c*b*c^-1=a^27*b^3>;
// generators/relations

׿
×
𝔽