extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×C3⋊S3) = C12.19D12 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 72 | | (C2xC4).1(C2xC3:S3) | 288,298 |
(C2×C4).2(C2×C3⋊S3) = C12.20D12 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).2(C2xC3:S3) | 288,299 |
(C2×C4).3(C2×C3⋊S3) = (C6×D4).S3 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 72 | | (C2xC4).3(C2xC3:S3) | 288,308 |
(C2×C4).4(C2×C3⋊S3) = (C6×C12).C4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).4(C2xC3:S3) | 288,311 |
(C2×C4).5(C2×C3⋊S3) = C62⋊6Q8 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).5(C2xC3:S3) | 288,735 |
(C2×C4).6(C2×C3⋊S3) = C62.228C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).6(C2xC3:S3) | 288,741 |
(C2×C4).7(C2×C3⋊S3) = C62.69D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).7(C2xC3:S3) | 288,743 |
(C2×C4).8(C2×C3⋊S3) = C12⋊2Dic6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 288 | | (C2xC4).8(C2xC3:S3) | 288,745 |
(C2×C4).9(C2×C3⋊S3) = C62.233C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 288 | | (C2xC4).9(C2xC3:S3) | 288,746 |
(C2×C4).10(C2×C3⋊S3) = C62.234C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 288 | | (C2xC4).10(C2xC3:S3) | 288,747 |
(C2×C4).11(C2×C3⋊S3) = C62.238C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).11(C2xC3:S3) | 288,751 |
(C2×C4).12(C2×C3⋊S3) = C12⋊3D12 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).12(C2xC3:S3) | 288,752 |
(C2×C4).13(C2×C3⋊S3) = C62.240C23 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).13(C2xC3:S3) | 288,753 |
(C2×C4).14(C2×C3⋊S3) = C12.31D12 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).14(C2xC3:S3) | 288,754 |
(C2×C4).15(C2×C3⋊S3) = C24⋊3D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 72 | | (C2xC4).15(C2xC3:S3) | 288,765 |
(C2×C4).16(C2×C3⋊S3) = C24.5D6 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).16(C2xC3:S3) | 288,766 |
(C2×C4).17(C2×C3⋊S3) = C62.131D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 72 | | (C2xC4).17(C2xC3:S3) | 288,789 |
(C2×C4).18(C2×C3⋊S3) = C62.72D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).18(C2xC3:S3) | 288,792 |
(C2×C4).19(C2×C3⋊S3) = C62⋊14D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).19(C2xC3:S3) | 288,796 |
(C2×C4).20(C2×C3⋊S3) = C62.134D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).20(C2xC3:S3) | 288,799 |
(C2×C4).21(C2×C3⋊S3) = C62.73D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 72 | | (C2xC4).21(C2xC3:S3) | 288,806 |
(C2×C4).22(C2×C3⋊S3) = C62.75D4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).22(C2xC3:S3) | 288,808 |
(C2×C4).23(C2×C3⋊S3) = C32⋊72- 1+4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).23(C2xC3:S3) | 288,1012 |
(C2×C4).24(C2×C3⋊S3) = C32⋊92- 1+4 | φ: C2×C3⋊S3/C32 → C22 ⊆ Aut C2×C4 | 144 | | (C2xC4).24(C2xC3:S3) | 288,1015 |
(C2×C4).25(C2×C3⋊S3) = C62.221C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).25(C2xC3:S3) | 288,734 |
(C2×C4).26(C2×C3⋊S3) = C62.223C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).26(C2xC3:S3) | 288,736 |
(C2×C4).27(C2×C3⋊S3) = C62.225C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).27(C2xC3:S3) | 288,738 |
(C2×C4).28(C2×C3⋊S3) = C62.227C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).28(C2xC3:S3) | 288,740 |
(C2×C4).29(C2×C3⋊S3) = C62.229C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).29(C2xC3:S3) | 288,742 |
(C2×C4).30(C2×C3⋊S3) = C62.231C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).30(C2xC3:S3) | 288,744 |
(C2×C4).31(C2×C3⋊S3) = C4⋊C4×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).31(C2xC3:S3) | 288,748 |
(C2×C4).32(C2×C3⋊S3) = C62.236C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).32(C2xC3:S3) | 288,749 |
(C2×C4).33(C2×C3⋊S3) = C62.242C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).33(C2xC3:S3) | 288,755 |
(C2×C4).34(C2×C3⋊S3) = C12.9Dic6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).34(C2xC3:S3) | 288,282 |
(C2×C4).35(C2×C3⋊S3) = C12.10Dic6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).35(C2xC3:S3) | 288,283 |
(C2×C4).36(C2×C3⋊S3) = C62.113D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).36(C2xC3:S3) | 288,284 |
(C2×C4).37(C2×C3⋊S3) = C62.114D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).37(C2xC3:S3) | 288,285 |
(C2×C4).38(C2×C3⋊S3) = C62.8Q8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).38(C2xC3:S3) | 288,297 |
(C2×C4).39(C2×C3⋊S3) = C62.37D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 72 | | (C2xC4).39(C2xC3:S3) | 288,300 |
(C2×C4).40(C2×C3⋊S3) = C62.116D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).40(C2xC3:S3) | 288,307 |
(C2×C4).41(C2×C3⋊S3) = C62.117D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).41(C2xC3:S3) | 288,310 |
(C2×C4).42(C2×C3⋊S3) = C62.39D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 72 | | (C2xC4).42(C2xC3:S3) | 288,312 |
(C2×C4).43(C2×C3⋊S3) = C62.237C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).43(C2xC3:S3) | 288,750 |
(C2×C4).44(C2×C3⋊S3) = M4(2)×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 72 | | (C2xC4).44(C2xC3:S3) | 288,763 |
(C2×C4).45(C2×C3⋊S3) = C24.47D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).45(C2xC3:S3) | 288,764 |
(C2×C4).46(C2×C3⋊S3) = C2×C32⋊7D8 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).46(C2xC3:S3) | 288,788 |
(C2×C4).47(C2×C3⋊S3) = C2×C32⋊9SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).47(C2xC3:S3) | 288,790 |
(C2×C4).48(C2×C3⋊S3) = D4×C3⋊Dic3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).48(C2xC3:S3) | 288,791 |
(C2×C4).49(C2×C3⋊S3) = C62.254C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).49(C2xC3:S3) | 288,793 |
(C2×C4).50(C2×C3⋊S3) = C62.256C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).50(C2xC3:S3) | 288,795 |
(C2×C4).51(C2×C3⋊S3) = C62.258C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).51(C2xC3:S3) | 288,797 |
(C2×C4).52(C2×C3⋊S3) = C2×C32⋊11SD16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).52(C2xC3:S3) | 288,798 |
(C2×C4).53(C2×C3⋊S3) = C2×C32⋊7Q16 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).53(C2xC3:S3) | 288,800 |
(C2×C4).54(C2×C3⋊S3) = C62.259C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).54(C2xC3:S3) | 288,801 |
(C2×C4).55(C2×C3⋊S3) = Q8×C3⋊Dic3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).55(C2xC3:S3) | 288,802 |
(C2×C4).56(C2×C3⋊S3) = C62.261C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).56(C2xC3:S3) | 288,803 |
(C2×C4).57(C2×C3⋊S3) = C62.262C23 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).57(C2xC3:S3) | 288,804 |
(C2×C4).58(C2×C3⋊S3) = D4.(C3⋊Dic3) | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).58(C2xC3:S3) | 288,805 |
(C2×C4).59(C2×C3⋊S3) = C62.74D4 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).59(C2xC3:S3) | 288,807 |
(C2×C4).60(C2×C3⋊S3) = C2×C12.D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).60(C2xC3:S3) | 288,1008 |
(C2×C4).61(C2×C3⋊S3) = C2×Q8×C3⋊S3 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).61(C2xC3:S3) | 288,1010 |
(C2×C4).62(C2×C3⋊S3) = C2×C12.26D6 | φ: C2×C3⋊S3/C3⋊S3 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).62(C2xC3:S3) | 288,1011 |
(C2×C4).63(C2×C3⋊S3) = C12.25Dic6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).63(C2xC3:S3) | 288,727 |
(C2×C4).64(C2×C3⋊S3) = C122⋊16C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).64(C2xC3:S3) | 288,729 |
(C2×C4).65(C2×C3⋊S3) = C122⋊6C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).65(C2xC3:S3) | 288,732 |
(C2×C4).66(C2×C3⋊S3) = C122⋊2C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).66(C2xC3:S3) | 288,733 |
(C2×C4).67(C2×C3⋊S3) = C2×C6.Dic6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).67(C2xC3:S3) | 288,780 |
(C2×C4).68(C2×C3⋊S3) = C62.129D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).68(C2xC3:S3) | 288,786 |
(C2×C4).69(C2×C3⋊S3) = C62⋊19D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).69(C2xC3:S3) | 288,787 |
(C2×C4).70(C2×C3⋊S3) = C122⋊C2 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 72 | | (C2xC4).70(C2xC3:S3) | 288,280 |
(C2×C4).71(C2×C3⋊S3) = C6.4Dic12 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).71(C2xC3:S3) | 288,291 |
(C2×C4).72(C2×C3⋊S3) = C24⋊2Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).72(C2xC3:S3) | 288,292 |
(C2×C4).73(C2×C3⋊S3) = C24⋊1Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).73(C2xC3:S3) | 288,293 |
(C2×C4).74(C2×C3⋊S3) = C12.59D12 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).74(C2xC3:S3) | 288,294 |
(C2×C4).75(C2×C3⋊S3) = C62.84D4 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).75(C2xC3:S3) | 288,296 |
(C2×C4).76(C2×C3⋊S3) = C12⋊6Dic6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).76(C2xC3:S3) | 288,726 |
(C2×C4).77(C2×C3⋊S3) = C12⋊4D12 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).77(C2xC3:S3) | 288,731 |
(C2×C4).78(C2×C3⋊S3) = C24.95D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).78(C2xC3:S3) | 288,758 |
(C2×C4).79(C2×C3⋊S3) = C2×C24⋊2S3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).79(C2xC3:S3) | 288,759 |
(C2×C4).80(C2×C3⋊S3) = C2×C32⋊5D8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).80(C2xC3:S3) | 288,760 |
(C2×C4).81(C2×C3⋊S3) = C24.78D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).81(C2xC3:S3) | 288,761 |
(C2×C4).82(C2×C3⋊S3) = C2×C32⋊5Q16 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).82(C2xC3:S3) | 288,762 |
(C2×C4).83(C2×C3⋊S3) = C2×C12.58D6 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).83(C2xC3:S3) | 288,778 |
(C2×C4).84(C2×C3⋊S3) = C62⋊10Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).84(C2xC3:S3) | 288,781 |
(C2×C4).85(C2×C3⋊S3) = C2×C12⋊Dic3 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).85(C2xC3:S3) | 288,782 |
(C2×C4).86(C2×C3⋊S3) = C22×C32⋊4Q8 | φ: C2×C3⋊S3/C3×C6 → C2 ⊆ Aut C2×C4 | 288 | | (C2xC4).86(C2xC3:S3) | 288,1003 |
(C2×C4).87(C2×C3⋊S3) = C4×C32⋊4C8 | central extension (φ=1) | 288 | | (C2xC4).87(C2xC3:S3) | 288,277 |
(C2×C4).88(C2×C3⋊S3) = C122.C2 | central extension (φ=1) | 288 | | (C2xC4).88(C2xC3:S3) | 288,278 |
(C2×C4).89(C2×C3⋊S3) = C12.57D12 | central extension (φ=1) | 288 | | (C2xC4).89(C2xC3:S3) | 288,279 |
(C2×C4).90(C2×C3⋊S3) = C8×C3⋊Dic3 | central extension (φ=1) | 288 | | (C2xC4).90(C2xC3:S3) | 288,288 |
(C2×C4).91(C2×C3⋊S3) = C12.30Dic6 | central extension (φ=1) | 288 | | (C2xC4).91(C2xC3:S3) | 288,289 |
(C2×C4).92(C2×C3⋊S3) = C24⋊Dic3 | central extension (φ=1) | 288 | | (C2xC4).92(C2xC3:S3) | 288,290 |
(C2×C4).93(C2×C3⋊S3) = C12.60D12 | central extension (φ=1) | 144 | | (C2xC4).93(C2xC3:S3) | 288,295 |
(C2×C4).94(C2×C3⋊S3) = C62⋊7C8 | central extension (φ=1) | 144 | | (C2xC4).94(C2xC3:S3) | 288,305 |
(C2×C4).95(C2×C3⋊S3) = C4×C32⋊4Q8 | central extension (φ=1) | 288 | | (C2xC4).95(C2xC3:S3) | 288,725 |
(C2×C4).96(C2×C3⋊S3) = C42×C3⋊S3 | central extension (φ=1) | 144 | | (C2xC4).96(C2xC3:S3) | 288,728 |
(C2×C4).97(C2×C3⋊S3) = C4×C12⋊S3 | central extension (φ=1) | 144 | | (C2xC4).97(C2xC3:S3) | 288,730 |
(C2×C4).98(C2×C3⋊S3) = C2×C8×C3⋊S3 | central extension (φ=1) | 144 | | (C2xC4).98(C2xC3:S3) | 288,756 |
(C2×C4).99(C2×C3⋊S3) = C2×C24⋊S3 | central extension (φ=1) | 144 | | (C2xC4).99(C2xC3:S3) | 288,757 |
(C2×C4).100(C2×C3⋊S3) = C22×C32⋊4C8 | central extension (φ=1) | 288 | | (C2xC4).100(C2xC3:S3) | 288,777 |
(C2×C4).101(C2×C3⋊S3) = C2×C4×C3⋊Dic3 | central extension (φ=1) | 288 | | (C2xC4).101(C2xC3:S3) | 288,779 |
(C2×C4).102(C2×C3⋊S3) = C62.247C23 | central extension (φ=1) | 144 | | (C2xC4).102(C2xC3:S3) | 288,783 |
(C2×C4).103(C2×C3⋊S3) = C4×C32⋊7D4 | central extension (φ=1) | 144 | | (C2xC4).103(C2xC3:S3) | 288,785 |