Copied to
clipboard

G = C24.47D6order 288 = 25·32

47th non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C24.47D6, C12.40(C4×S3), C24⋊S310C2, C12⋊S3.3C4, C34(D12.C4), (C2×C12).146D6, C3212(C8○D4), (C3×M4(2))⋊6S3, C62.64(C2×C4), C327D4.3C4, M4(2)⋊5(C3⋊S3), C324Q8.3C4, (C3×C24).49C22, (C3×C12).179C23, (C6×C12).137C22, C12.210(C22×S3), C12.59D6.6C2, (C32×M4(2))⋊10C2, C324C8.40C22, C4.5(C4×C3⋊S3), C6.76(S3×C2×C4), (C8×C3⋊S3)⋊16C2, C8.12(C2×C3⋊S3), (C2×C6).23(C4×S3), C22.1(C4×C3⋊S3), (C3×C12).74(C2×C4), (C2×C324C8)⋊8C2, C4.39(C22×C3⋊S3), (C4×C3⋊S3).94C22, C3⋊Dic3.39(C2×C4), (C3×C6).107(C22×C4), C2.17(C2×C4×C3⋊S3), (C2×C4).45(C2×C3⋊S3), (C2×C3⋊S3).33(C2×C4), SmallGroup(288,764)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C24.47D6
C1C3C32C3×C6C3×C12C4×C3⋊S3C12.59D6 — C24.47D6
C32C3×C6 — C24.47D6
C1C4M4(2)

Generators and relations for C24.47D6
 G = < a,b,c | a24=b6=1, c2=a12, bab-1=a13, cac-1=a17, cbc-1=a12b-1 >

Subgroups: 572 in 186 conjugacy classes, 73 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C32, Dic3, C12, D6, C2×C6, C2×C8, M4(2), M4(2), C4○D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C8○D4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, S3×C8, C8⋊S3, C2×C3⋊C8, C3×M4(2), C4○D12, C324C8, C3×C24, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C6×C12, D12.C4, C8×C3⋊S3, C24⋊S3, C2×C324C8, C32×M4(2), C12.59D6, C24.47D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C3⋊S3, C4×S3, C22×S3, C8○D4, C2×C3⋊S3, S3×C2×C4, C4×C3⋊S3, C22×C3⋊S3, D12.C4, C2×C4×C3⋊S3, C24.47D6

Smallest permutation representation of C24.47D6
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 81 39 54 134 97)(2 94 40 67 135 110)(3 83 41 56 136 99)(4 96 42 69 137 112)(5 85 43 58 138 101)(6 74 44 71 139 114)(7 87 45 60 140 103)(8 76 46 49 141 116)(9 89 47 62 142 105)(10 78 48 51 143 118)(11 91 25 64 144 107)(12 80 26 53 121 120)(13 93 27 66 122 109)(14 82 28 55 123 98)(15 95 29 68 124 111)(16 84 30 57 125 100)(17 73 31 70 126 113)(18 86 32 59 127 102)(19 75 33 72 128 115)(20 88 34 61 129 104)(21 77 35 50 130 117)(22 90 36 63 131 106)(23 79 37 52 132 119)(24 92 38 65 133 108)
(1 33 13 45)(2 26 14 38)(3 43 15 31)(4 36 16 48)(5 29 17 41)(6 46 18 34)(7 39 19 27)(8 32 20 44)(9 25 21 37)(10 42 22 30)(11 35 23 47)(12 28 24 40)(49 114 61 102)(50 107 62 119)(51 100 63 112)(52 117 64 105)(53 110 65 98)(54 103 66 115)(55 120 67 108)(56 113 68 101)(57 106 69 118)(58 99 70 111)(59 116 71 104)(60 109 72 97)(73 95 85 83)(74 88 86 76)(75 81 87 93)(77 91 89 79)(78 84 90 96)(80 94 92 82)(121 123 133 135)(122 140 134 128)(124 126 136 138)(125 143 137 131)(127 129 139 141)(130 132 142 144)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,81,39,54,134,97)(2,94,40,67,135,110)(3,83,41,56,136,99)(4,96,42,69,137,112)(5,85,43,58,138,101)(6,74,44,71,139,114)(7,87,45,60,140,103)(8,76,46,49,141,116)(9,89,47,62,142,105)(10,78,48,51,143,118)(11,91,25,64,144,107)(12,80,26,53,121,120)(13,93,27,66,122,109)(14,82,28,55,123,98)(15,95,29,68,124,111)(16,84,30,57,125,100)(17,73,31,70,126,113)(18,86,32,59,127,102)(19,75,33,72,128,115)(20,88,34,61,129,104)(21,77,35,50,130,117)(22,90,36,63,131,106)(23,79,37,52,132,119)(24,92,38,65,133,108), (1,33,13,45)(2,26,14,38)(3,43,15,31)(4,36,16,48)(5,29,17,41)(6,46,18,34)(7,39,19,27)(8,32,20,44)(9,25,21,37)(10,42,22,30)(11,35,23,47)(12,28,24,40)(49,114,61,102)(50,107,62,119)(51,100,63,112)(52,117,64,105)(53,110,65,98)(54,103,66,115)(55,120,67,108)(56,113,68,101)(57,106,69,118)(58,99,70,111)(59,116,71,104)(60,109,72,97)(73,95,85,83)(74,88,86,76)(75,81,87,93)(77,91,89,79)(78,84,90,96)(80,94,92,82)(121,123,133,135)(122,140,134,128)(124,126,136,138)(125,143,137,131)(127,129,139,141)(130,132,142,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,81,39,54,134,97)(2,94,40,67,135,110)(3,83,41,56,136,99)(4,96,42,69,137,112)(5,85,43,58,138,101)(6,74,44,71,139,114)(7,87,45,60,140,103)(8,76,46,49,141,116)(9,89,47,62,142,105)(10,78,48,51,143,118)(11,91,25,64,144,107)(12,80,26,53,121,120)(13,93,27,66,122,109)(14,82,28,55,123,98)(15,95,29,68,124,111)(16,84,30,57,125,100)(17,73,31,70,126,113)(18,86,32,59,127,102)(19,75,33,72,128,115)(20,88,34,61,129,104)(21,77,35,50,130,117)(22,90,36,63,131,106)(23,79,37,52,132,119)(24,92,38,65,133,108), (1,33,13,45)(2,26,14,38)(3,43,15,31)(4,36,16,48)(5,29,17,41)(6,46,18,34)(7,39,19,27)(8,32,20,44)(9,25,21,37)(10,42,22,30)(11,35,23,47)(12,28,24,40)(49,114,61,102)(50,107,62,119)(51,100,63,112)(52,117,64,105)(53,110,65,98)(54,103,66,115)(55,120,67,108)(56,113,68,101)(57,106,69,118)(58,99,70,111)(59,116,71,104)(60,109,72,97)(73,95,85,83)(74,88,86,76)(75,81,87,93)(77,91,89,79)(78,84,90,96)(80,94,92,82)(121,123,133,135)(122,140,134,128)(124,126,136,138)(125,143,137,131)(127,129,139,141)(130,132,142,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,81,39,54,134,97),(2,94,40,67,135,110),(3,83,41,56,136,99),(4,96,42,69,137,112),(5,85,43,58,138,101),(6,74,44,71,139,114),(7,87,45,60,140,103),(8,76,46,49,141,116),(9,89,47,62,142,105),(10,78,48,51,143,118),(11,91,25,64,144,107),(12,80,26,53,121,120),(13,93,27,66,122,109),(14,82,28,55,123,98),(15,95,29,68,124,111),(16,84,30,57,125,100),(17,73,31,70,126,113),(18,86,32,59,127,102),(19,75,33,72,128,115),(20,88,34,61,129,104),(21,77,35,50,130,117),(22,90,36,63,131,106),(23,79,37,52,132,119),(24,92,38,65,133,108)], [(1,33,13,45),(2,26,14,38),(3,43,15,31),(4,36,16,48),(5,29,17,41),(6,46,18,34),(7,39,19,27),(8,32,20,44),(9,25,21,37),(10,42,22,30),(11,35,23,47),(12,28,24,40),(49,114,61,102),(50,107,62,119),(51,100,63,112),(52,117,64,105),(53,110,65,98),(54,103,66,115),(55,120,67,108),(56,113,68,101),(57,106,69,118),(58,99,70,111),(59,116,71,104),(60,109,72,97),(73,95,85,83),(74,88,86,76),(75,81,87,93),(77,91,89,79),(78,84,90,96),(80,94,92,82),(121,123,133,135),(122,140,134,128),(124,126,136,138),(125,143,137,131),(127,129,139,141),(130,132,142,144)]])

60 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B4C4D4E6A6B6C6D6E6F6G6H8A8B8C8D8E8F8G8H8I8J12A···12H12I12J12K12L24A···24P
order1222233334444466666666888888888812···121212121224···24
size112181822221121818222244442222999918182···244444···4

60 irreducible representations

dim1111111112222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4S3D6D6C4×S3C4×S3C8○D4D12.C4
kernelC24.47D6C8×C3⋊S3C24⋊S3C2×C324C8C32×M4(2)C12.59D6C324Q8C12⋊S3C327D4C3×M4(2)C24C2×C12C12C2×C6C32C3
# reps1221112244848848

Matrix representation of C24.47D6 in GL6(𝔽73)

72720000
100000
00464600
0027000
0000630
00004310
,
7200000
0720000
0007200
001100
00005139
00005522
,
100000
72720000
0007200
0072000
0000270
0000846

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,46,27,0,0,0,0,46,0,0,0,0,0,0,0,63,43,0,0,0,0,0,10],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,1,0,0,0,0,0,0,51,55,0,0,0,0,39,22],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,27,8,0,0,0,0,0,46] >;

C24.47D6 in GAP, Magma, Sage, TeX

C_{24}._{47}D_6
% in TeX

G:=Group("C24.47D6");
// GroupNames label

G:=SmallGroup(288,764);
// by ID

G=gap.SmallGroup(288,764);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,219,58,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^24=b^6=1,c^2=a^12,b*a*b^-1=a^13,c*a*c^-1=a^17,c*b*c^-1=a^12*b^-1>;
// generators/relations

׿
×
𝔽