Extensions 1→N→G→Q→1 with N=D4 and Q=C2xC3:S3

Direct product G=NxQ with N=D4 and Q=C2xC3:S3
dρLabelID
C2xD4xC3:S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=D4 and Q=C2xC3:S3
extensionφ:Q→Out NdρLabelID
D4:1(C2xC3:S3) = D8xC3:S3φ: C2xC3:S3/C3:S3C2 ⊆ Out D472D4:1(C2xC3:S3)288,767
D4:2(C2xC3:S3) = C24:8D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D472D4:2(C2xC3:S3)288,768
D4:3(C2xC3:S3) = C2xC32:7D8φ: C2xC3:S3/C3xC6C2 ⊆ Out D4144D4:3(C2xC3:S3)288,788
D4:4(C2xC3:S3) = C62.73D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D472D4:4(C2xC3:S3)288,806
D4:5(C2xC3:S3) = C2xC12.D6φ: trivial image144D4:5(C2xC3:S3)288,1008
D4:6(C2xC3:S3) = C32:82+ 1+4φ: trivial image72D4:6(C2xC3:S3)288,1009
D4:7(C2xC3:S3) = C4oD4xC3:S3φ: trivial image72D4:7(C2xC3:S3)288,1013
D4:8(C2xC3:S3) = C62.154C23φ: trivial image72D4:8(C2xC3:S3)288,1014

Non-split extensions G=N.Q with N=D4 and Q=C2xC3:S3
extensionφ:Q→Out NdρLabelID
D4.1(C2xC3:S3) = C24.26D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D4144D4.1(C2xC3:S3)288,769
D4.2(C2xC3:S3) = SD16xC3:S3φ: C2xC3:S3/C3:S3C2 ⊆ Out D472D4.2(C2xC3:S3)288,770
D4.3(C2xC3:S3) = C24:7D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D472D4.3(C2xC3:S3)288,771
D4.4(C2xC3:S3) = C24.32D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D4144D4.4(C2xC3:S3)288,772
D4.5(C2xC3:S3) = C24.40D6φ: C2xC3:S3/C3:S3C2 ⊆ Out D4144D4.5(C2xC3:S3)288,773
D4.6(C2xC3:S3) = C62.131D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D472D4.6(C2xC3:S3)288,789
D4.7(C2xC3:S3) = C2xC32:9SD16φ: C2xC3:S3/C3xC6C2 ⊆ Out D4144D4.7(C2xC3:S3)288,790
D4.8(C2xC3:S3) = C62.74D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D4144D4.8(C2xC3:S3)288,807
D4.9(C2xC3:S3) = C62.75D4φ: C2xC3:S3/C3xC6C2 ⊆ Out D4144D4.9(C2xC3:S3)288,808
D4.10(C2xC3:S3) = C32:92- 1+4φ: trivial image144D4.10(C2xC3:S3)288,1015

׿
x
:
Z
F
o
wr
Q
<