Extensions 1→N→G→Q→1 with N=D4 and Q=C2×C3⋊S3

Direct product G=N×Q with N=D4 and Q=C2×C3⋊S3
dρLabelID
C2×D4×C3⋊S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=D4 and Q=C2×C3⋊S3
extensionφ:Q→Out NdρLabelID
D41(C2×C3⋊S3) = D8×C3⋊S3φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D472D4:1(C2xC3:S3)288,767
D42(C2×C3⋊S3) = C248D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D472D4:2(C2xC3:S3)288,768
D43(C2×C3⋊S3) = C2×C327D8φ: C2×C3⋊S3/C3×C6C2 ⊆ Out D4144D4:3(C2xC3:S3)288,788
D44(C2×C3⋊S3) = C62.73D4φ: C2×C3⋊S3/C3×C6C2 ⊆ Out D472D4:4(C2xC3:S3)288,806
D45(C2×C3⋊S3) = C2×C12.D6φ: trivial image144D4:5(C2xC3:S3)288,1008
D46(C2×C3⋊S3) = C3282+ 1+4φ: trivial image72D4:6(C2xC3:S3)288,1009
D47(C2×C3⋊S3) = C4○D4×C3⋊S3φ: trivial image72D4:7(C2xC3:S3)288,1013
D48(C2×C3⋊S3) = C62.154C23φ: trivial image72D4:8(C2xC3:S3)288,1014

Non-split extensions G=N.Q with N=D4 and Q=C2×C3⋊S3
extensionφ:Q→Out NdρLabelID
D4.1(C2×C3⋊S3) = C24.26D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D4144D4.1(C2xC3:S3)288,769
D4.2(C2×C3⋊S3) = SD16×C3⋊S3φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D472D4.2(C2xC3:S3)288,770
D4.3(C2×C3⋊S3) = C247D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D472D4.3(C2xC3:S3)288,771
D4.4(C2×C3⋊S3) = C24.32D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D4144D4.4(C2xC3:S3)288,772
D4.5(C2×C3⋊S3) = C24.40D6φ: C2×C3⋊S3/C3⋊S3C2 ⊆ Out D4144D4.5(C2xC3:S3)288,773
D4.6(C2×C3⋊S3) = C62.131D4φ: C2×C3⋊S3/C3×C6C2 ⊆ Out D472D4.6(C2xC3:S3)288,789
D4.7(C2×C3⋊S3) = C2×C329SD16φ: C2×C3⋊S3/C3×C6C2 ⊆ Out D4144D4.7(C2xC3:S3)288,790
D4.8(C2×C3⋊S3) = C62.74D4φ: C2×C3⋊S3/C3×C6C2 ⊆ Out D4144D4.8(C2xC3:S3)288,807
D4.9(C2×C3⋊S3) = C62.75D4φ: C2×C3⋊S3/C3×C6C2 ⊆ Out D4144D4.9(C2xC3:S3)288,808
D4.10(C2×C3⋊S3) = C3292- 1+4φ: trivial image144D4.10(C2xC3:S3)288,1015

׿
×
𝔽