Extensions 1→N→G→Q→1 with N=C3 and Q=C12⋊D4

Direct product G=N×Q with N=C3 and Q=C12⋊D4
dρLabelID
C3×C12⋊D496C3xC12:D4288,666

Semidirect products G=N:Q with N=C3 and Q=C12⋊D4
extensionφ:Q→Aut NdρLabelID
C31(C12⋊D4) = Dic33D12φ: C12⋊D4/D6⋊C4C2 ⊆ Aut C348C3:1(C12:D4)288,558
C32(C12⋊D4) = C123D12φ: C12⋊D4/C3×C4⋊C4C2 ⊆ Aut C3144C3:2(C12:D4)288,752
C33(C12⋊D4) = C127D12φ: C12⋊D4/S3×C2×C4C2 ⊆ Aut C348C3:3(C12:D4)288,557
C34(C12⋊D4) = Dic3⋊D12φ: C12⋊D4/C2×D12C2 ⊆ Aut C348C3:4(C12:D4)288,534
C35(C12⋊D4) = C122D12φ: C12⋊D4/C2×D12C2 ⊆ Aut C348C3:5(C12:D4)288,564

Non-split extensions G=N.Q with N=C3 and Q=C12⋊D4
extensionφ:Q→Aut NdρLabelID
C3.(C12⋊D4) = C4⋊D36φ: C12⋊D4/C3×C4⋊C4C2 ⊆ Aut C3144C3.(C12:D4)288,105

׿
×
𝔽