Copied to
clipboard

G = C4⋊D36order 288 = 25·32

The semidirect product of C4 and D36 acting via D36/D18=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C361D4, C42D36, D182D4, C12.5D12, C4⋊C43D9, D18⋊C47C2, (C2×D36)⋊4C2, C92(C4⋊D4), (C2×C12).9D6, (C2×C4).9D18, C2.13(D4×D9), C6.87(S3×D4), C18.7(C2×D4), C2.9(C2×D36), C3.(C12⋊D4), C6.36(C2×D12), C18.34(C4○D4), (C2×C18).36C23, (C2×C36).11C22, C2.6(Q83D9), C6.41(Q83S3), C22.50(C22×D9), (C2×Dic9).34C22, (C22×D9).20C22, (C2×C4×D9)⋊1C2, (C9×C4⋊C4)⋊6C2, (C3×C4⋊C4).13S3, (C2×C6).193(C22×S3), SmallGroup(288,105)

Series: Derived Chief Lower central Upper central

C1C2×C18 — C4⋊D36
C1C3C9C18C2×C18C22×D9C2×C4×D9 — C4⋊D36
C9C2×C18 — C4⋊D36
C1C22C4⋊C4

Generators and relations for C4⋊D36
 G = < a,b,c | a4=b36=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 812 in 141 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, C23, C9, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D9, C18, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C4⋊D4, Dic9, C36, C36, D18, D18, C2×C18, D6⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C4×D9, D36, C2×Dic9, C2×C36, C2×C36, C22×D9, C22×D9, C12⋊D4, D18⋊C4, C9×C4⋊C4, C2×C4×D9, C2×D36, C2×D36, C4⋊D36
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D9, D12, C22×S3, C4⋊D4, D18, C2×D12, S3×D4, Q83S3, D36, C22×D9, C12⋊D4, C2×D36, D4×D9, Q83D9, C4⋊D36

Smallest permutation representation of C4⋊D36
On 144 points
Generators in S144
(1 75 59 144)(2 109 60 76)(3 77 61 110)(4 111 62 78)(5 79 63 112)(6 113 64 80)(7 81 65 114)(8 115 66 82)(9 83 67 116)(10 117 68 84)(11 85 69 118)(12 119 70 86)(13 87 71 120)(14 121 72 88)(15 89 37 122)(16 123 38 90)(17 91 39 124)(18 125 40 92)(19 93 41 126)(20 127 42 94)(21 95 43 128)(22 129 44 96)(23 97 45 130)(24 131 46 98)(25 99 47 132)(26 133 48 100)(27 101 49 134)(28 135 50 102)(29 103 51 136)(30 137 52 104)(31 105 53 138)(32 139 54 106)(33 107 55 140)(34 141 56 108)(35 73 57 142)(36 143 58 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(28 36)(29 35)(30 34)(31 33)(37 71)(38 70)(39 69)(40 68)(41 67)(42 66)(43 65)(44 64)(45 63)(46 62)(47 61)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(73 136)(74 135)(75 134)(76 133)(77 132)(78 131)(79 130)(80 129)(81 128)(82 127)(83 126)(84 125)(85 124)(86 123)(87 122)(88 121)(89 120)(90 119)(91 118)(92 117)(93 116)(94 115)(95 114)(96 113)(97 112)(98 111)(99 110)(100 109)(101 144)(102 143)(103 142)(104 141)(105 140)(106 139)(107 138)(108 137)

G:=sub<Sym(144)| (1,75,59,144)(2,109,60,76)(3,77,61,110)(4,111,62,78)(5,79,63,112)(6,113,64,80)(7,81,65,114)(8,115,66,82)(9,83,67,116)(10,117,68,84)(11,85,69,118)(12,119,70,86)(13,87,71,120)(14,121,72,88)(15,89,37,122)(16,123,38,90)(17,91,39,124)(18,125,40,92)(19,93,41,126)(20,127,42,94)(21,95,43,128)(22,129,44,96)(23,97,45,130)(24,131,46,98)(25,99,47,132)(26,133,48,100)(27,101,49,134)(28,135,50,102)(29,103,51,136)(30,137,52,104)(31,105,53,138)(32,139,54,106)(33,107,55,140)(34,141,56,108)(35,73,57,142)(36,143,58,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,144)(102,143)(103,142)(104,141)(105,140)(106,139)(107,138)(108,137)>;

G:=Group( (1,75,59,144)(2,109,60,76)(3,77,61,110)(4,111,62,78)(5,79,63,112)(6,113,64,80)(7,81,65,114)(8,115,66,82)(9,83,67,116)(10,117,68,84)(11,85,69,118)(12,119,70,86)(13,87,71,120)(14,121,72,88)(15,89,37,122)(16,123,38,90)(17,91,39,124)(18,125,40,92)(19,93,41,126)(20,127,42,94)(21,95,43,128)(22,129,44,96)(23,97,45,130)(24,131,46,98)(25,99,47,132)(26,133,48,100)(27,101,49,134)(28,135,50,102)(29,103,51,136)(30,137,52,104)(31,105,53,138)(32,139,54,106)(33,107,55,140)(34,141,56,108)(35,73,57,142)(36,143,58,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,63)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(73,136)(74,135)(75,134)(76,133)(77,132)(78,131)(79,130)(80,129)(81,128)(82,127)(83,126)(84,125)(85,124)(86,123)(87,122)(88,121)(89,120)(90,119)(91,118)(92,117)(93,116)(94,115)(95,114)(96,113)(97,112)(98,111)(99,110)(100,109)(101,144)(102,143)(103,142)(104,141)(105,140)(106,139)(107,138)(108,137) );

G=PermutationGroup([[(1,75,59,144),(2,109,60,76),(3,77,61,110),(4,111,62,78),(5,79,63,112),(6,113,64,80),(7,81,65,114),(8,115,66,82),(9,83,67,116),(10,117,68,84),(11,85,69,118),(12,119,70,86),(13,87,71,120),(14,121,72,88),(15,89,37,122),(16,123,38,90),(17,91,39,124),(18,125,40,92),(19,93,41,126),(20,127,42,94),(21,95,43,128),(22,129,44,96),(23,97,45,130),(24,131,46,98),(25,99,47,132),(26,133,48,100),(27,101,49,134),(28,135,50,102),(29,103,51,136),(30,137,52,104),(31,105,53,138),(32,139,54,106),(33,107,55,140),(34,141,56,108),(35,73,57,142),(36,143,58,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(28,36),(29,35),(30,34),(31,33),(37,71),(38,70),(39,69),(40,68),(41,67),(42,66),(43,65),(44,64),(45,63),(46,62),(47,61),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(73,136),(74,135),(75,134),(76,133),(77,132),(78,131),(79,130),(80,129),(81,128),(82,127),(83,126),(84,125),(85,124),(86,123),(87,122),(88,121),(89,120),(90,119),(91,118),(92,117),(93,116),(94,115),(95,114),(96,113),(97,112),(98,111),(99,110),(100,109),(101,144),(102,143),(103,142),(104,141),(105,140),(106,139),(107,138),(108,137)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C9A9B9C12A···12F18A···18I36A···36R
order12222222344444466699912···1218···1836···36
size1111181836362224418182222224···42···24···4

54 irreducible representations

dim111112222222224444
type+++++++++++++++++
imageC1C2C2C2C2S3D4D4D6C4○D4D9D12D18D36S3×D4Q83S3D4×D9Q83D9
kernelC4⋊D36D18⋊C4C9×C4⋊C4C2×C4×D9C2×D36C3×C4⋊C4C36D18C2×C12C18C4⋊C4C12C2×C4C4C6C6C2C2
# reps1211312232349121133

Matrix representation of C4⋊D36 in GL4(𝔽37) generated by

0600
6000
0010
0001
,
0100
36000
003329
00825
,
36000
0100
003117
00116
G:=sub<GL(4,GF(37))| [0,6,0,0,6,0,0,0,0,0,1,0,0,0,0,1],[0,36,0,0,1,0,0,0,0,0,33,8,0,0,29,25],[36,0,0,0,0,1,0,0,0,0,31,11,0,0,17,6] >;

C4⋊D36 in GAP, Magma, Sage, TeX

C_4\rtimes D_{36}
% in TeX

G:=Group("C4:D36");
// GroupNames label

G:=SmallGroup(288,105);
// by ID

G=gap.SmallGroup(288,105);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,58,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^4=b^36=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽