Copied to
clipboard

G = C12⋊D4order 96 = 25·3

1st semidirect product of C12 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D62D4, C42D12, C121D4, C4⋊C43S3, D6⋊C48C2, C6.7(C2×D4), (C2×D12)⋊4C2, C32(C4⋊D4), (C2×C4).12D6, C2.13(S3×D4), C2.9(C2×D12), C6.34(C4○D4), (C2×C6).36C23, (C2×C12).5C22, C2.6(Q83S3), (C22×S3).7C22, C22.50(C22×S3), (C2×Dic3).31C22, (S3×C2×C4)⋊1C2, (C3×C4⋊C4)⋊6C2, SmallGroup(96,102)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C12⋊D4
C1C3C6C2×C6C22×S3S3×C2×C4 — C12⋊D4
C3C2×C6 — C12⋊D4
C1C22C4⋊C4

Generators and relations for C12⋊D4
 G = < a,b,c | a12=b4=c2=1, bab-1=a7, cac=a-1, cbc=b-1 >

Subgroups: 266 in 94 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C4⋊D4, D6⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C2×D12, C12⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C2×D12, S3×D4, Q83S3, C12⋊D4

Character table of C12⋊D4

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F6A6B6C12A12B12C12D12E12F
 size 11116612122224466222444444
ρ1111111111111111111111111    trivial
ρ2111111-1-1111-1-1111111-11-1-1-1    linear of order 2
ρ31111-1-1-1-111111-1-1111111111    linear of order 2
ρ41111-1-111111-1-1-1-11111-11-1-1-1    linear of order 2
ρ51111-1-1-111-1-1-1111111-1-1-1-111    linear of order 2
ρ61111-1-11-11-1-11-111111-11-11-1-1    linear of order 2
ρ71111111-11-1-1-11-1-1111-1-1-1-111    linear of order 2
ρ8111111-111-1-11-1-1-1111-11-11-1-1    linear of order 2
ρ922220000-122-2-200-1-1-1-11-1111    orthogonal lifted from D6
ρ1022220000-1-2-22-200-1-1-11-11-111    orthogonal lifted from D6
ρ112-2-22000022-20000-22-220-2000    orthogonal lifted from D4
ρ122-22-2-22002000000-2-22000000    orthogonal lifted from D4
ρ1322220000-1222200-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422220000-1-2-2-2200-1-1-11111-1-1    orthogonal lifted from D6
ρ152-22-22-2002000000-2-22000000    orthogonal lifted from D4
ρ162-2-2200002-220000-22-2-202000    orthogonal lifted from D4
ρ172-2-220000-1-2200001-111-3-13-33    orthogonal lifted from D12
ρ182-2-220000-1-2200001-1113-1-33-3    orthogonal lifted from D12
ρ192-2-220000-12-200001-11-1-3133-3    orthogonal lifted from D12
ρ202-2-220000-12-200001-11-131-3-33    orthogonal lifted from D12
ρ2122-2-20000200002i-2i2-2-2000000    complex lifted from C4○D4
ρ2222-2-2000020000-2i2i2-2-2000000    complex lifted from C4○D4
ρ234-44-40000-200000022-2000000    orthogonal lifted from S3×D4
ρ2444-4-40000-2000000-222000000    orthogonal lifted from Q83S3, Schur index 2

Smallest permutation representation of C12⋊D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 47 22 33)(2 42 23 28)(3 37 24 35)(4 44 13 30)(5 39 14 25)(6 46 15 32)(7 41 16 27)(8 48 17 34)(9 43 18 29)(10 38 19 36)(11 45 20 31)(12 40 21 26)
(1 22)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 15)(9 14)(10 13)(11 24)(12 23)(25 29)(26 28)(30 36)(31 35)(32 34)(37 45)(38 44)(39 43)(40 42)(46 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,22,33)(2,42,23,28)(3,37,24,35)(4,44,13,30)(5,39,14,25)(6,46,15,32)(7,41,16,27)(8,48,17,34)(9,43,18,29)(10,38,19,36)(11,45,20,31)(12,40,21,26), (1,22)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(11,24)(12,23)(25,29)(26,28)(30,36)(31,35)(32,34)(37,45)(38,44)(39,43)(40,42)(46,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,22,33)(2,42,23,28)(3,37,24,35)(4,44,13,30)(5,39,14,25)(6,46,15,32)(7,41,16,27)(8,48,17,34)(9,43,18,29)(10,38,19,36)(11,45,20,31)(12,40,21,26), (1,22)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(11,24)(12,23)(25,29)(26,28)(30,36)(31,35)(32,34)(37,45)(38,44)(39,43)(40,42)(46,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47,22,33),(2,42,23,28),(3,37,24,35),(4,44,13,30),(5,39,14,25),(6,46,15,32),(7,41,16,27),(8,48,17,34),(9,43,18,29),(10,38,19,36),(11,45,20,31),(12,40,21,26)], [(1,22),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(11,24),(12,23),(25,29),(26,28),(30,36),(31,35),(32,34),(37,45),(38,44),(39,43),(40,42),(46,48)]])

C12⋊D4 is a maximal subgroup of
D4⋊D12  D6⋊D8  D43D12  C3⋊C8⋊D4  Q83D12  D62SD16  Q84D12  C3⋊(C8⋊D4)  D6.4SD16  C88D12  C247D4  C4.Q8⋊S3  D6.5D8  D62D8  C2.D8⋊S3  C83D12  C6.2- 1+4  C6.2+ 1+4  C6.112+ 1+4  C4210D6  C4211D6  C42.95D6  C42.97D6  C42.228D6  D4×D12  D45D12  C42.116D6  Q86D12  Q87D12  C42.131D6  C42.133D6  Dic620D4  S3×C4⋊D4  C6.382+ 1+4  D1219D4  C4⋊C426D6  C6.172- 1+4  D1221D4  Dic622D4  C6.562+ 1+4  C6.592+ 1+4  C6.1202+ 1+4  C6.1212+ 1+4  C6.662+ 1+4  C6.682+ 1+4  C42.237D6  C42.150D6  C42.153D6  C42.155D6  C42.158D6  C4225D6  C42.163D6  C4227D6  C42.240D6  D1212D4  C42.178D6  C42.179D6  C4⋊D36  Dic3⋊D12  C127D12  Dic33D12  C122D12  C123D12  Dic5⋊D12  D30⋊D4  C606D4  C202D12  C4⋊D60
C12⋊D4 is a maximal quotient of
(C22×C4).85D6  (C2×C4)⋊9D12  D6⋊C43C4  (C2×C12)⋊5D4  C6.C22≀C2  (C2×C4).21D12  C12⋊SD16  C4⋊D24  D12.19D4  C42.36D6  Dic68D4  C4⋊Dic12  C88D12  C247D4  C8.2D12  D62D8  C83D12  D62Q16  C24.18D4  C24.19D4  C24.42D4  C4⋊C46Dic3  C4⋊(D6⋊C4)  (C2×D12)⋊10C4  (C2×C4)⋊3D12  (C2×C12).56D4  C4⋊D36  Dic3⋊D12  C127D12  Dic33D12  C122D12  C123D12  Dic5⋊D12  D30⋊D4  C606D4  C202D12  C4⋊D60

Matrix representation of C12⋊D4 in GL4(𝔽13) generated by

11200
1000
00111
00112
,
3700
61000
00120
00121
,
0100
1000
0010
00112
G:=sub<GL(4,GF(13))| [1,1,0,0,12,0,0,0,0,0,1,1,0,0,11,12],[3,6,0,0,7,10,0,0,0,0,12,12,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,12] >;

C12⋊D4 in GAP, Magma, Sage, TeX

C_{12}\rtimes D_4
% in TeX

G:=Group("C12:D4");
// GroupNames label

G:=SmallGroup(96,102);
// by ID

G=gap.SmallGroup(96,102);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,50,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=c^2=1,b*a*b^-1=a^7,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Character table of C12⋊D4 in TeX

׿
×
𝔽