Extensions 1→N→G→Q→1 with N=C3×Q82S3 and Q=C2

Direct product G=N×Q with N=C3×Q82S3 and Q=C2
dρLabelID
C6×Q82S396C6xQ8:2S3288,712

Semidirect products G=N:Q with N=C3×Q82S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Q82S3)⋊1C2 = D126D6φ: C2/C1C2 ⊆ Out C3×Q82S3488+(C3xQ8:2S3):1C2288,587
(C3×Q82S3)⋊2C2 = D12.10D6φ: C2/C1C2 ⊆ Out C3×Q82S3488+(C3xQ8:2S3):2C2288,589
(C3×Q82S3)⋊3C2 = D12.24D6φ: C2/C1C2 ⊆ Out C3×Q82S3968-(C3xQ8:2S3):3C2288,594
(C3×Q82S3)⋊4C2 = D12.15D6φ: C2/C1C2 ⊆ Out C3×Q82S3488-(C3xQ8:2S3):4C2288,599
(C3×Q82S3)⋊5C2 = S3×Q82S3φ: C2/C1C2 ⊆ Out C3×Q82S3488+(C3xQ8:2S3):5C2288,586
(C3×Q82S3)⋊6C2 = D12.9D6φ: C2/C1C2 ⊆ Out C3×Q82S3488-(C3xQ8:2S3):6C2288,588
(C3×Q82S3)⋊7C2 = D12.12D6φ: C2/C1C2 ⊆ Out C3×Q82S3968-(C3xQ8:2S3):7C2288,595
(C3×Q82S3)⋊8C2 = D12.14D6φ: C2/C1C2 ⊆ Out C3×Q82S3488+(C3xQ8:2S3):8C2288,598
(C3×Q82S3)⋊9C2 = C3×Q83D6φ: C2/C1C2 ⊆ Out C3×Q82S3484(C3xQ8:2S3):9C2288,685
(C3×Q82S3)⋊10C2 = C3×Q16⋊S3φ: C2/C1C2 ⊆ Out C3×Q82S3964(C3xQ8:2S3):10C2288,689
(C3×Q82S3)⋊11C2 = C3×Q8.11D6φ: C2/C1C2 ⊆ Out C3×Q82S3484(C3xQ8:2S3):11C2288,713
(C3×Q82S3)⋊12C2 = C3×D4⋊D6φ: C2/C1C2 ⊆ Out C3×Q82S3484(C3xQ8:2S3):12C2288,720
(C3×Q82S3)⋊13C2 = C3×S3×SD16φ: C2/C1C2 ⊆ Out C3×Q82S3484(C3xQ8:2S3):13C2288,684
(C3×Q82S3)⋊14C2 = C3×D24⋊C2φ: C2/C1C2 ⊆ Out C3×Q82S3964(C3xQ8:2S3):14C2288,690
(C3×Q82S3)⋊15C2 = C3×Q8.13D6φ: trivial image484(C3xQ8:2S3):15C2288,721


׿
×
𝔽