Copied to
clipboard

G = D12.10D6order 288 = 25·32

10th non-split extension by D12 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: D12.10D6, Q85S32, C3⋊C811D6, (C3×Q8)⋊6D6, C6.62(S3×D4), D6⋊D65C2, C34(Q83D6), Q82S33S3, C3⋊D2414C2, C3⋊Dic3.59D4, C12⋊S36C22, C12.31D64C2, C12.26D61C2, C3215(C8⋊C22), C12.18(C22×S3), (C3×C12).18C23, C2.22(Dic3⋊D6), (Q8×C32)⋊4C22, (C3×D12).18C22, C4.18(C2×S32), (C3×C3⋊C8)⋊9C22, (C2×C3⋊S3).24D4, (C3×Q82S3)⋊2C2, (C3×C6).133(C2×D4), (C4×C3⋊S3).18C22, SmallGroup(288,589)

Series: Derived Chief Lower central Upper central

C1C3×C12 — D12.10D6
C1C3C32C3×C6C3×C12C3×D12D6⋊D6 — D12.10D6
C32C3×C6C3×C12 — D12.10D6
C1C2C4Q8

Generators and relations for D12.10D6
 G = < a,b,c,d | a12=b2=1, c6=a6, d2=a3, bab=a-1, cac-1=a7, ad=da, cbc-1=dbd-1=a3b, dcd-1=a9c5 >

Subgroups: 826 in 156 conjugacy classes, 38 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C4×S3, D12, D12, C3⋊D4, C3×D4, C3×Q8, C3×Q8, C22×S3, C8⋊C22, C3⋊Dic3, C3×C12, C3×C12, S32, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C8⋊S3, D24, D4⋊S3, Q82S3, C3×SD16, S3×D4, Q83S3, C3×C3⋊C8, D6⋊S3, C3×D12, C4×C3⋊S3, C4×C3⋊S3, C12⋊S3, C12⋊S3, Q8×C32, C2×S32, Q83D6, C12.31D6, C3⋊D24, C3×Q82S3, D6⋊D6, C12.26D6, D12.10D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C8⋊C22, S32, S3×D4, C2×S32, Q83D6, Dic3⋊D6, D12.10D6

Character table of D12.10D6

 class 12A2B2C2D2E3A3B3C4A4B4C6A6B6C6D6E8A8B12A12B12C12D12E12F12G24A24B24C24D
 size 1112121836224241822424241212448888812121212
ρ1111111111111111111111111111111    trivial
ρ211-11-111111-1-1111-11-1111-1-11-1-1-111-1    linear of order 2
ρ311111-11111-1111111-1-111-1-11-1-1-1-1-1-1    linear of order 2
ρ411-11-1-111111-1111-111-111111111-1-11    linear of order 2
ρ511-1-11-11111-11111-1-11111-1-11-1-11111    linear of order 2
ρ6111-1-1-111111-11111-1-111111111-111-1    linear of order 2
ρ711-1-111111111111-1-1-1-11111111-1-1-1-1    linear of order 2
ρ8111-1-111111-1-11111-11-111-1-11-1-11-1-11    linear of order 2
ρ9222000-12-12202-1-1-1002-122-1-1-1-10-1-10    orthogonal lifted from S3
ρ1022-2000-12-12-202-1-11002-12-21-1110-1-10    orthogonal lifted from D6
ρ11220-2002-1-12-20-12-101202-111-11-2-100-1    orthogonal lifted from D6
ρ1222-2000-12-12202-1-1100-2-122-1-1-1-10110    orthogonal lifted from D6
ρ13222000-12-12-202-1-1-100-2-12-21-1110110    orthogonal lifted from D6
ρ142202002-1-1220-12-10-1202-1-1-1-1-12-100-1    orthogonal lifted from S3
ρ15220-2002-1-1220-12-101-202-1-1-1-1-121001    orthogonal lifted from D6
ρ162202002-1-12-20-12-10-1-202-111-11-21001    orthogonal lifted from D6
ρ17220020222-20-22220000-2-200-2000000    orthogonal lifted from D4
ρ182200-20222-2022220000-2-200-2000000    orthogonal lifted from D4
ρ19440000-2-214-40-2-210000-2-22-11-120000    orthogonal lifted from C2×S32
ρ20440000-24-2-4004-2-200002-4002000000    orthogonal lifted from S3×D4
ρ21440000-2-21-400-2-210000220-3-1300000    orthogonal lifted from Dic3⋊D6
ρ224400004-2-2-400-24-20000-42002000000    orthogonal lifted from S3×D4
ρ23440000-2-21440-2-210000-2-2-2111-20000    orthogonal lifted from S32
ρ244-40000444000-4-4-4000000000000000    orthogonal lifted from C8⋊C22
ρ25440000-2-21-400-2-2100002203-1-300000    orthogonal lifted from Dic3⋊D6
ρ264-40000-24-2000-4220000000000006-60    orthogonal lifted from Q83D6
ρ274-40000-24-2000-422000000000000-660    orthogonal lifted from Q83D6
ρ284-400004-2-20002-4200000000000600-6    orthogonal lifted from Q83D6
ρ294-400004-2-20002-4200000000000-6006    orthogonal lifted from Q83D6
ρ308-80000-4-4200044-2000000000000000    orthogonal faithful, Schur index 2

Smallest permutation representation of D12.10D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 27)(2 26)(3 25)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 39)(14 38)(15 37)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)
(1 24 11 22 9 20 7 18 5 16 3 14)(2 19 12 17 10 15 8 13 6 23 4 21)(25 47 27 37 29 39 31 41 33 43 35 45)(26 42 28 44 30 46 32 48 34 38 36 40)
(1 48 4 39 7 42 10 45)(2 37 5 40 8 43 11 46)(3 38 6 41 9 44 12 47)(13 36 16 27 19 30 22 33)(14 25 17 28 20 31 23 34)(15 26 18 29 21 32 24 35)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,24,11,22,9,20,7,18,5,16,3,14)(2,19,12,17,10,15,8,13,6,23,4,21)(25,47,27,37,29,39,31,41,33,43,35,45)(26,42,28,44,30,46,32,48,34,38,36,40), (1,48,4,39,7,42,10,45)(2,37,5,40,8,43,11,46)(3,38,6,41,9,44,12,47)(13,36,16,27,19,30,22,33)(14,25,17,28,20,31,23,34)(15,26,18,29,21,32,24,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,39)(14,38)(15,37)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40), (1,24,11,22,9,20,7,18,5,16,3,14)(2,19,12,17,10,15,8,13,6,23,4,21)(25,47,27,37,29,39,31,41,33,43,35,45)(26,42,28,44,30,46,32,48,34,38,36,40), (1,48,4,39,7,42,10,45)(2,37,5,40,8,43,11,46)(3,38,6,41,9,44,12,47)(13,36,16,27,19,30,22,33)(14,25,17,28,20,31,23,34)(15,26,18,29,21,32,24,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27),(2,26),(3,25),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,39),(14,38),(15,37),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40)], [(1,24,11,22,9,20,7,18,5,16,3,14),(2,19,12,17,10,15,8,13,6,23,4,21),(25,47,27,37,29,39,31,41,33,43,35,45),(26,42,28,44,30,46,32,48,34,38,36,40)], [(1,48,4,39,7,42,10,45),(2,37,5,40,8,43,11,46),(3,38,6,41,9,44,12,47),(13,36,16,27,19,30,22,33),(14,25,17,28,20,31,23,34),(15,26,18,29,21,32,24,35)]])

Matrix representation of D12.10D6 in GL8(𝔽73)

072000000
172000000
000720000
001720000
0000721271
000072020
0000721172
000072010
,
001720000
000720000
172000000
072000000
000090240
00009642449
0000210640
00002152649
,
172000000
10000000
00010000
007210000
000041644556
00009321728
00002719329
000054466441
,
00010000
007210000
172000000
10000000
00006810563
00006351068
000034500
0000683900

G:=sub<GL(8,GF(73))| [0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,72,72,72,72,0,0,0,0,1,0,1,0,0,0,0,0,2,2,1,1,0,0,0,0,71,0,72,0],[0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,9,9,21,21,0,0,0,0,0,64,0,52,0,0,0,0,24,24,64,64,0,0,0,0,0,49,0,9],[1,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,41,9,27,54,0,0,0,0,64,32,19,46,0,0,0,0,45,17,32,64,0,0,0,0,56,28,9,41],[0,0,1,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,68,63,34,68,0,0,0,0,10,5,5,39,0,0,0,0,5,10,0,0,0,0,0,0,63,68,0,0] >;

D12.10D6 in GAP, Magma, Sage, TeX

D_{12}._{10}D_6
% in TeX

G:=Group("D12.10D6");
// GroupNames label

G:=SmallGroup(288,589);
// by ID

G=gap.SmallGroup(288,589);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,303,100,675,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^6=a^6,d^2=a^3,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=a^9*c^5>;
// generators/relations

Export

Character table of D12.10D6 in TeX

׿
×
𝔽