direct product, metabelian, supersoluble, monomial
Aliases: C6×Q8⋊2S3, C62.124D4, (C6×Q8)⋊5C6, Q8⋊5(S3×C6), (C3×Q8)⋊22D6, (C6×Q8)⋊12S3, C6⋊3(C3×SD16), C3⋊4(C6×SD16), C6.53(C6×D4), (C2×D12).8C6, D12.9(C2×C6), (C3×C6)⋊10SD16, (C3×C12).88D4, C12.18(C3×D4), (C6×D12).13C2, (C2×C12).329D6, C32⋊19(C2×SD16), C12.90(C3⋊D4), C12.14(C22×C6), (C3×C12).85C23, (C6×C12).124C22, C12.165(C22×S3), (C3×D12).38C22, (Q8×C32)⋊13C22, (C2×C3⋊C8)⋊6C6, C3⋊C8⋊9(C2×C6), (C6×C3⋊C8)⋊22C2, (Q8×C3×C6)⋊1C2, C4.14(S3×C2×C6), (C2×Q8)⋊5(C3×S3), (C3×Q8)⋊5(C2×C6), C4.8(C3×C3⋊D4), (C3×C3⋊C8)⋊40C22, (C2×C4).53(S3×C6), (C2×C6).50(C3×D4), C2.17(C6×C3⋊D4), (C2×C12).35(C2×C6), (C3×C6).261(C2×D4), C6.154(C2×C3⋊D4), C22.23(C3×C3⋊D4), (C2×C6).116(C3⋊D4), SmallGroup(288,712)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×Q8⋊2S3
G = < a,b,c,d,e | a6=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ece=b-1c, ede=d-1 >
Subgroups: 394 in 155 conjugacy classes, 66 normal (34 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C32, C12, C12, D6, C2×C6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, D12, D12, C2×C12, C2×C12, C3×D4, C3×Q8, C3×Q8, C22×S3, C22×C6, C2×SD16, C3×C12, C3×C12, S3×C6, C62, C2×C3⋊C8, Q8⋊2S3, C2×C24, C3×SD16, C2×D12, C6×D4, C6×Q8, C6×Q8, C3×C3⋊C8, C3×D12, C3×D12, C6×C12, C6×C12, Q8×C32, Q8×C32, S3×C2×C6, C2×Q8⋊2S3, C6×SD16, C6×C3⋊C8, C3×Q8⋊2S3, C6×D12, Q8×C3×C6, C6×Q8⋊2S3
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, SD16, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, C2×SD16, S3×C6, Q8⋊2S3, C3×SD16, C2×C3⋊D4, C6×D4, C3×C3⋊D4, S3×C2×C6, C2×Q8⋊2S3, C6×SD16, C3×Q8⋊2S3, C6×C3⋊D4, C6×Q8⋊2S3
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 22 41 35)(2 23 42 36)(3 24 37 31)(4 19 38 32)(5 20 39 33)(6 21 40 34)(7 48 53 17)(8 43 54 18)(9 44 49 13)(10 45 50 14)(11 46 51 15)(12 47 52 16)(25 94 73 63)(26 95 74 64)(27 96 75 65)(28 91 76 66)(29 92 77 61)(30 93 78 62)(55 80 86 67)(56 81 87 68)(57 82 88 69)(58 83 89 70)(59 84 90 71)(60 79 85 72)
(1 44 41 13)(2 45 42 14)(3 46 37 15)(4 47 38 16)(5 48 39 17)(6 43 40 18)(7 33 53 20)(8 34 54 21)(9 35 49 22)(10 36 50 23)(11 31 51 24)(12 32 52 19)(25 85 73 60)(26 86 74 55)(27 87 75 56)(28 88 76 57)(29 89 77 58)(30 90 78 59)(61 70 92 83)(62 71 93 84)(63 72 94 79)(64 67 95 80)(65 68 96 81)(66 69 91 82)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)(49 53 51)(50 54 52)(55 57 59)(56 58 60)(61 63 65)(62 64 66)(67 69 71)(68 70 72)(73 75 77)(74 76 78)(79 81 83)(80 82 84)(85 87 89)(86 88 90)(91 93 95)(92 94 96)
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 78)(8 73)(9 74)(10 75)(11 76)(12 77)(13 64)(14 65)(15 66)(16 61)(17 62)(18 63)(19 70)(20 71)(21 72)(22 67)(23 68)(24 69)(25 54)(26 49)(27 50)(28 51)(29 52)(30 53)(31 82)(32 83)(33 84)(34 79)(35 80)(36 81)(37 88)(38 89)(39 90)(40 85)(41 86)(42 87)(43 94)(44 95)(45 96)(46 91)(47 92)(48 93)
G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,22,41,35)(2,23,42,36)(3,24,37,31)(4,19,38,32)(5,20,39,33)(6,21,40,34)(7,48,53,17)(8,43,54,18)(9,44,49,13)(10,45,50,14)(11,46,51,15)(12,47,52,16)(25,94,73,63)(26,95,74,64)(27,96,75,65)(28,91,76,66)(29,92,77,61)(30,93,78,62)(55,80,86,67)(56,81,87,68)(57,82,88,69)(58,83,89,70)(59,84,90,71)(60,79,85,72), (1,44,41,13)(2,45,42,14)(3,46,37,15)(4,47,38,16)(5,48,39,17)(6,43,40,18)(7,33,53,20)(8,34,54,21)(9,35,49,22)(10,36,50,23)(11,31,51,24)(12,32,52,19)(25,85,73,60)(26,86,74,55)(27,87,75,56)(28,88,76,57)(29,89,77,58)(30,90,78,59)(61,70,92,83)(62,71,93,84)(63,72,94,79)(64,67,95,80)(65,68,96,81)(66,69,91,82), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46)(49,53,51)(50,54,52)(55,57,59)(56,58,60)(61,63,65)(62,64,66)(67,69,71)(68,70,72)(73,75,77)(74,76,78)(79,81,83)(80,82,84)(85,87,89)(86,88,90)(91,93,95)(92,94,96), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,78)(8,73)(9,74)(10,75)(11,76)(12,77)(13,64)(14,65)(15,66)(16,61)(17,62)(18,63)(19,70)(20,71)(21,72)(22,67)(23,68)(24,69)(25,54)(26,49)(27,50)(28,51)(29,52)(30,53)(31,82)(32,83)(33,84)(34,79)(35,80)(36,81)(37,88)(38,89)(39,90)(40,85)(41,86)(42,87)(43,94)(44,95)(45,96)(46,91)(47,92)(48,93)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,22,41,35)(2,23,42,36)(3,24,37,31)(4,19,38,32)(5,20,39,33)(6,21,40,34)(7,48,53,17)(8,43,54,18)(9,44,49,13)(10,45,50,14)(11,46,51,15)(12,47,52,16)(25,94,73,63)(26,95,74,64)(27,96,75,65)(28,91,76,66)(29,92,77,61)(30,93,78,62)(55,80,86,67)(56,81,87,68)(57,82,88,69)(58,83,89,70)(59,84,90,71)(60,79,85,72), (1,44,41,13)(2,45,42,14)(3,46,37,15)(4,47,38,16)(5,48,39,17)(6,43,40,18)(7,33,53,20)(8,34,54,21)(9,35,49,22)(10,36,50,23)(11,31,51,24)(12,32,52,19)(25,85,73,60)(26,86,74,55)(27,87,75,56)(28,88,76,57)(29,89,77,58)(30,90,78,59)(61,70,92,83)(62,71,93,84)(63,72,94,79)(64,67,95,80)(65,68,96,81)(66,69,91,82), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46)(49,53,51)(50,54,52)(55,57,59)(56,58,60)(61,63,65)(62,64,66)(67,69,71)(68,70,72)(73,75,77)(74,76,78)(79,81,83)(80,82,84)(85,87,89)(86,88,90)(91,93,95)(92,94,96), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,78)(8,73)(9,74)(10,75)(11,76)(12,77)(13,64)(14,65)(15,66)(16,61)(17,62)(18,63)(19,70)(20,71)(21,72)(22,67)(23,68)(24,69)(25,54)(26,49)(27,50)(28,51)(29,52)(30,53)(31,82)(32,83)(33,84)(34,79)(35,80)(36,81)(37,88)(38,89)(39,90)(40,85)(41,86)(42,87)(43,94)(44,95)(45,96)(46,91)(47,92)(48,93) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,22,41,35),(2,23,42,36),(3,24,37,31),(4,19,38,32),(5,20,39,33),(6,21,40,34),(7,48,53,17),(8,43,54,18),(9,44,49,13),(10,45,50,14),(11,46,51,15),(12,47,52,16),(25,94,73,63),(26,95,74,64),(27,96,75,65),(28,91,76,66),(29,92,77,61),(30,93,78,62),(55,80,86,67),(56,81,87,68),(57,82,88,69),(58,83,89,70),(59,84,90,71),(60,79,85,72)], [(1,44,41,13),(2,45,42,14),(3,46,37,15),(4,47,38,16),(5,48,39,17),(6,43,40,18),(7,33,53,20),(8,34,54,21),(9,35,49,22),(10,36,50,23),(11,31,51,24),(12,32,52,19),(25,85,73,60),(26,86,74,55),(27,87,75,56),(28,88,76,57),(29,89,77,58),(30,90,78,59),(61,70,92,83),(62,71,93,84),(63,72,94,79),(64,67,95,80),(65,68,96,81),(66,69,91,82)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46),(49,53,51),(50,54,52),(55,57,59),(56,58,60),(61,63,65),(62,64,66),(67,69,71),(68,70,72),(73,75,77),(74,76,78),(79,81,83),(80,82,84),(85,87,89),(86,88,90),(91,93,95),(92,94,96)], [(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,78),(8,73),(9,74),(10,75),(11,76),(12,77),(13,64),(14,65),(15,66),(16,61),(17,62),(18,63),(19,70),(20,71),(21,72),(22,67),(23,68),(24,69),(25,54),(26,49),(27,50),(28,51),(29,52),(30,53),(31,82),(32,83),(33,84),(34,79),(35,80),(36,81),(37,88),(38,89),(39,90),(40,85),(41,86),(42,87),(43,94),(44,95),(45,96),(46,91),(47,92),(48,93)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | ··· | 6O | 6P | 6Q | 6R | 6S | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12Z | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 12 | 12 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 12 | 12 | 12 | 12 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | S3 | D4 | D4 | D6 | D6 | SD16 | C3×S3 | C3⋊D4 | C3×D4 | C3⋊D4 | C3×D4 | S3×C6 | S3×C6 | C3×SD16 | C3×C3⋊D4 | C3×C3⋊D4 | Q8⋊2S3 | C3×Q8⋊2S3 |
kernel | C6×Q8⋊2S3 | C6×C3⋊C8 | C3×Q8⋊2S3 | C6×D12 | Q8×C3×C6 | C2×Q8⋊2S3 | C2×C3⋊C8 | Q8⋊2S3 | C2×D12 | C6×Q8 | C6×Q8 | C3×C12 | C62 | C2×C12 | C3×Q8 | C3×C6 | C2×Q8 | C12 | C12 | C2×C6 | C2×C6 | C2×C4 | Q8 | C6 | C4 | C22 | C6 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 | 4 | 4 | 2 | 4 |
Matrix representation of C6×Q8⋊2S3 ►in GL5(𝔽73)
9 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 71 |
0 | 0 | 0 | 1 | 1 |
72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 32 | 51 |
0 | 0 | 0 | 30 | 41 |
1 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 68 | 54 |
0 | 0 | 0 | 32 | 5 |
G:=sub<GL(5,GF(73))| [9,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,1,0,0,0,71,1],[72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,32,30,0,0,0,51,41],[1,0,0,0,0,0,8,0,0,0,0,0,64,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,68,32,0,0,0,54,5] >;
C6×Q8⋊2S3 in GAP, Magma, Sage, TeX
C_6\times Q_8\rtimes_2S_3
% in TeX
G:=Group("C6xQ8:2S3");
// GroupNames label
G:=SmallGroup(288,712);
// by ID
G=gap.SmallGroup(288,712);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,590,268,2524,648,102,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations