extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6)⋊Dic6 = Dic3.S4 | φ: Dic6/C2 → D6 ⊆ Aut C2×C6 | 72 | 6- | (C2xC6):Dic6 | 288,852 |
(C2×C6)⋊2Dic6 = C3×A4⋊Q8 | φ: Dic6/C4 → S3 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6):2Dic6 | 288,896 |
(C2×C6)⋊3Dic6 = A4⋊Dic6 | φ: Dic6/C4 → S3 ⊆ Aut C2×C6 | 72 | 6- | (C2xC6):3Dic6 | 288,907 |
(C2×C6)⋊4Dic6 = C62⋊4Q8 | φ: Dic6/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6):4Dic6 | 288,630 |
(C2×C6)⋊5Dic6 = C62⋊6Q8 | φ: Dic6/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6):5Dic6 | 288,735 |
(C2×C6)⋊6Dic6 = C3×Dic3.D4 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):6Dic6 | 288,649 |
(C2×C6)⋊7Dic6 = C62⋊3Q8 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):7Dic6 | 288,612 |
(C2×C6)⋊8Dic6 = C22×C32⋊2Q8 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6):8Dic6 | 288,975 |
(C2×C6)⋊9Dic6 = C3×C12.48D4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6):9Dic6 | 288,695 |
(C2×C6)⋊10Dic6 = C62⋊10Q8 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6):10Dic6 | 288,781 |
(C2×C6)⋊11Dic6 = C22×C32⋊4Q8 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6):11Dic6 | 288,1003 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).Dic6 = C12.1S4 | φ: Dic6/C4 → S3 ⊆ Aut C2×C6 | 72 | 6- | (C2xC6).Dic6 | 288,332 |
(C2×C6).2Dic6 = C36.53D4 | φ: Dic6/C6 → C22 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).2Dic6 | 288,29 |
(C2×C6).3Dic6 = C22⋊2Dic18 | φ: Dic6/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).3Dic6 | 288,88 |
(C2×C6).4Dic6 = C62.5Q8 | φ: Dic6/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).4Dic6 | 288,226 |
(C2×C6).5Dic6 = C62.8Q8 | φ: Dic6/C6 → C22 ⊆ Aut C2×C6 | 144 | | (C2xC6).5Dic6 | 288,297 |
(C2×C6).6Dic6 = C3×C12.53D4 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).6Dic6 | 288,256 |
(C2×C6).7Dic6 = C12.82D12 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).7Dic6 | 288,225 |
(C2×C6).8Dic6 = C62.6Q8 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).8Dic6 | 288,227 |
(C2×C6).9Dic6 = C2×Dic3⋊Dic3 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).9Dic6 | 288,613 |
(C2×C6).10Dic6 = C2×C62.C22 | φ: Dic6/Dic3 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).10Dic6 | 288,615 |
(C2×C6).11Dic6 = C3×C24.C4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).11Dic6 | 288,253 |
(C2×C6).12Dic6 = C72.C4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 144 | 2 | (C2xC6).12Dic6 | 288,20 |
(C2×C6).13Dic6 = C18.C42 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).13Dic6 | 288,38 |
(C2×C6).14Dic6 = C2×Dic9⋊C4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).14Dic6 | 288,133 |
(C2×C6).15Dic6 = C36.49D4 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).15Dic6 | 288,134 |
(C2×C6).16Dic6 = C2×C4⋊Dic9 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).16Dic6 | 288,135 |
(C2×C6).17Dic6 = C12.59D12 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).17Dic6 | 288,294 |
(C2×C6).18Dic6 = C62.15Q8 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).18Dic6 | 288,306 |
(C2×C6).19Dic6 = C22×Dic18 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).19Dic6 | 288,352 |
(C2×C6).20Dic6 = C2×C6.Dic6 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).20Dic6 | 288,780 |
(C2×C6).21Dic6 = C2×C12⋊Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C2×C6 | 288 | | (C2xC6).21Dic6 | 288,782 |
(C2×C6).22Dic6 = C3×C6.C42 | central extension (φ=1) | 96 | | (C2xC6).22Dic6 | 288,265 |
(C2×C6).23Dic6 = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | (C2xC6).23Dic6 | 288,694 |
(C2×C6).24Dic6 = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | (C2xC6).24Dic6 | 288,696 |