Extensions 1→N→G→Q→1 with N=C4 and Q=D38

Direct product G=N×Q with N=C4 and Q=D38
dρLabelID
C2×C4×D19152C2xC4xD19304,28

Semidirect products G=N:Q with N=C4 and Q=D38
extensionφ:Q→Aut NdρLabelID
C41D38 = D4×D19φ: D38/D19C2 ⊆ Aut C4764+C4:1D38304,31
C42D38 = C2×D76φ: D38/C38C2 ⊆ Aut C4152C4:2D38304,29

Non-split extensions G=N.Q with N=C4 and Q=D38
extensionφ:Q→Aut NdρLabelID
C4.1D38 = D4⋊D19φ: D38/D19C2 ⊆ Aut C41524+C4.1D38304,14
C4.2D38 = D4.D19φ: D38/D19C2 ⊆ Aut C41524-C4.2D38304,15
C4.3D38 = Q8⋊D19φ: D38/D19C2 ⊆ Aut C41524+C4.3D38304,16
C4.4D38 = C19⋊Q16φ: D38/D19C2 ⊆ Aut C43044-C4.4D38304,17
C4.5D38 = D42D19φ: D38/D19C2 ⊆ Aut C41524-C4.5D38304,32
C4.6D38 = Q8×D19φ: D38/D19C2 ⊆ Aut C41524-C4.6D38304,33
C4.7D38 = D76⋊C2φ: D38/D19C2 ⊆ Aut C41524+C4.7D38304,34
C4.8D38 = C152⋊C2φ: D38/C38C2 ⊆ Aut C41522C4.8D38304,5
C4.9D38 = D152φ: D38/C38C2 ⊆ Aut C41522+C4.9D38304,6
C4.10D38 = Dic76φ: D38/C38C2 ⊆ Aut C43042-C4.10D38304,7
C4.11D38 = C2×Dic38φ: D38/C38C2 ⊆ Aut C4304C4.11D38304,27
C4.12D38 = C8×D19central extension (φ=1)1522C4.12D38304,3
C4.13D38 = C8⋊D19central extension (φ=1)1522C4.13D38304,4
C4.14D38 = C2×C19⋊C8central extension (φ=1)304C4.14D38304,8
C4.15D38 = C76.C4central extension (φ=1)1522C4.15D38304,9
C4.16D38 = D765C2central extension (φ=1)1522C4.16D38304,30

׿
×
𝔽