Direct product G=NxQ with N=C4 and Q=D38
Semidirect products G=N:Q with N=C4 and Q=D38
Non-split extensions G=N.Q with N=C4 and Q=D38
extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1D38 = D4:D19 | φ: D38/D19 → C2 ⊆ Aut C4 | 152 | 4+ | C4.1D38 | 304,14 |
C4.2D38 = D4.D19 | φ: D38/D19 → C2 ⊆ Aut C4 | 152 | 4- | C4.2D38 | 304,15 |
C4.3D38 = Q8:D19 | φ: D38/D19 → C2 ⊆ Aut C4 | 152 | 4+ | C4.3D38 | 304,16 |
C4.4D38 = C19:Q16 | φ: D38/D19 → C2 ⊆ Aut C4 | 304 | 4- | C4.4D38 | 304,17 |
C4.5D38 = D4:2D19 | φ: D38/D19 → C2 ⊆ Aut C4 | 152 | 4- | C4.5D38 | 304,32 |
C4.6D38 = Q8xD19 | φ: D38/D19 → C2 ⊆ Aut C4 | 152 | 4- | C4.6D38 | 304,33 |
C4.7D38 = D76:C2 | φ: D38/D19 → C2 ⊆ Aut C4 | 152 | 4+ | C4.7D38 | 304,34 |
C4.8D38 = C152:C2 | φ: D38/C38 → C2 ⊆ Aut C4 | 152 | 2 | C4.8D38 | 304,5 |
C4.9D38 = D152 | φ: D38/C38 → C2 ⊆ Aut C4 | 152 | 2+ | C4.9D38 | 304,6 |
C4.10D38 = Dic76 | φ: D38/C38 → C2 ⊆ Aut C4 | 304 | 2- | C4.10D38 | 304,7 |
C4.11D38 = C2xDic38 | φ: D38/C38 → C2 ⊆ Aut C4 | 304 | | C4.11D38 | 304,27 |
C4.12D38 = C8xD19 | central extension (φ=1) | 152 | 2 | C4.12D38 | 304,3 |
C4.13D38 = C8:D19 | central extension (φ=1) | 152 | 2 | C4.13D38 | 304,4 |
C4.14D38 = C2xC19:C8 | central extension (φ=1) | 304 | | C4.14D38 | 304,8 |
C4.15D38 = C76.C4 | central extension (φ=1) | 152 | 2 | C4.15D38 | 304,9 |
C4.16D38 = D76:5C2 | central extension (φ=1) | 152 | 2 | C4.16D38 | 304,30 |
x
:
Z
F
o
wr
Q
<